|
--- |
|
dataset_info: |
|
features: |
|
- name: input_ids |
|
sequence: int32 |
|
- name: attention_mask |
|
sequence: int8 |
|
- name: labels |
|
sequence: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 76440290.15811698 |
|
num_examples: 120113 |
|
- name: test |
|
num_bytes: 19110549.84188302 |
|
num_examples: 30029 |
|
download_size: 16997872 |
|
dataset_size: 95550840 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
task_categories: |
|
- token-classification |
|
language: |
|
- ko |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
## Dataset Summary |
|
NER-News-BIDataset is a dataset for named entity recognition (NER) in news articles, publicly released by the National Institute of Korean Language in 2023. |
|
The dataset is labeled with named entities specifically for news data. |
|
It consists of a total of 150,142 sentences, and entities are categorized into 150 labels for recognition. |
|
|
|
## Languages |
|
Korean |
|
|
|
## Data Structure |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['input_ids', 'attention_mask', 'labels'], |
|
num_rows: 120113 |
|
}) |
|
test: Dataset({ |
|
features: ['input_ids', 'attention_mask', 'labels'], |
|
num_rows: 30029 |
|
}) |
|
}) |
|
|
|
### Data Instances |
|
The dataset is provided in text format with train/test sets. |
|
Each instance represents a news article, and if there is an entity in the sentence, it is appropriately tagged with the corresponding label. |
|
In cases where a single entity is separated into multiple tokens, the first token is labeled as "B-entity" and the subsequent tokens are labeled as "I-entity" until the end. |
|
|
|
### Data Fields |
|
input_ids: "A processed named entity corpus of news articles constructed in 2022" has been tokenized and represented with numerical values. |
|
label: Identified a total of 151 entities, including the 0th label (not an entity). If counting both "B-entity" and "I-entity" labels for each entity, there are a total of 301 labels. |
|
The labeling is done with numerical values. |
|
The 151 types of labels are as follows: |
|
|
|
|index|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|61|62|63|64|65|66|67|68|69|70|71|72|73|74|75|76|77|78|79|80|81|82|83|84|85|86|87|88|89|90|91|92|93|94|95|96|97|98|99|100|101|102|103|104|105|106|107|108|109|110|111|112|113|114|115|116|117|118|119|120|121|122|123|124|125|126|127|128|129|130|131|132|133|134|135|136|137|138|139|140|141|142|143|144|145|146|147|148|149|150|151|152|153|154|155|156|157|158|159|160|161|162|163|164|165|166|167|168|169|170|171|172|173|174|175|176|177|178|179|180|181|182|183|184|185|186|187|188|189|190|191|192|193|194|195|196|197|198|199|200|201|202|203|204|205|206|207|208|209|210|211|212|213|214|215|216|217|218|219|220|221|222|223|224|225|226|227|228|229|230|231|232|233|234|235|236|237|238|239|240|241|242|243|244|245|246|247|248|249|250|251|252|253|254|255|256|257|258|259|260|261|262|263|264|265|266|267|268|269|270|271|272|273|274|275|276|277|278|279|280|281|282|283|284|285|286|287|288|289|290|291|292|293|294|295|296|297|298|299|300| |
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| |
|
|Label|O|B-PS\_NAME|B-PS\_CHARACTER|B-PS\_PET|B-FD\_SCIENCE|B-FD\_SOCIAL\_SCIENCE|B-FD\_MEDICINE|B-FD\_ART|B-FD\_HUMANITIES|B-FD\_OTHERS|B-TR\_SCIENCE|B-TR\_SOCIAL\_SCIENCE|B-TR\_MEDICINE|B-TR\_ART|B-TR\_HUMANITIES|B-TR\_OTHERS|B-AF\_BUILDING|B-AF\_CULTURAL\_ASSET|B-AF\_ROAD|B-AF\_TRANSPORT|B-AF\_MUSICAL\_INSTRUMENT|B-AF\_WEAPON|B-AFA\_DOCUMENT|B-AFA\_PERFORMANCE|B-AFA\_VIDEO|B-AFA\_ART\_CRAFT|B-AFA\_MUSIC|B-AFW\_SERVICE\_PRODUCTS|B-AFW\_OTHER\_PRODUCTS|B-OGG\_ECONOMY|B-OGG\_EDUCATION|B-OGG\_MILITARY|B-OGG\_MEDIA|B-OGG\_SPORTS|B-OGG\_ART|B-OGG\_MEDICINE|B-OGG\_RELIGION|B-OGG\_SCIENCE|B-OGG\_LIBRARY|B-OGG\_LAW|B-OGG\_POLITICS|B-OGG\_FOOD|B-OGG\_HOTEL|B-OGG\_OTHERS|B-LCP\_COUNTRY|B-LCP\_PROVINCE|B-LCP\_COUNTY|B-LCP\_CITY|B-LCP\_CAPITALCITY|B-LCG\_RIVER|B-LCG\_OCEAN|B-LCG\_BAY|B-LCG\_MOUNTAIN|B-LCG\_ISLAND|B-LCG\_CONTINENT|B-LC\_SPACE|B-LC\_OTHERS|B-CV\_CULTURE|B-CV\_TRIBE|B-CV\_LANGUAGE|B-CV\_POLICY|B-CV\_LAW|B-CV\_CURRENCY|B-CV\_TAX|B-CV\_FUNDS|B-CV\_ART|B-CV\_SPORTS|B-CV\_SPORTS\_POSITION|B-CV\_SPORTS\_INST|B-CV\_PRIZE|B-CV\_RELATION|B-CV\_OCCUPATION|B-CV\_POSITION|B-CV\_FOOD|B-CV\_DRINK|B-CV\_FOOD\_STYLE|B-CV\_CLOTHING|B-CV\_BUILDING\_TYPE|B-DT\_DURATION|B-DT\_DAY|B-DT\_WEEK|B-DT\_MONTH|B-DT\_YEAR|B-DT\_SEASON|B-DT\_GEOAGE|B-DT\_DYNASTY|B-DT\_OTHERS|B-TI\_DURATION|B-TI\_HOUR|B-TI\_MINUTE|B-TI\_SECOND|B-TI\_OTHERS|B-QT\_AGE|B-QT\_SIZE|B-QT\_LENGTH|B-QT\_COUNT|B-QT\_MAN\_COUNT|B-QT\_WEIGHT|B-QT\_PERCENTAGE|B-QT\_SPEED|B-QT\_TEMPERATURE|B-QT\_VOLUME|B-QT\_ORDER|B-QT\_PRICE|B-QT\_PHONE|B-QT\_SPORTS|B-QT\_CHANNEL|B-QT\_ALBUM|B-QT\_ADDRESS|B-QT\_OTHERS|B-EV\_ACTIVITY|B-EV\_WAR\_REVOLUTION|B-EV\_SPORTS|B-EV\_FESTIVAL|B-EV\_OTHERS|B-AM\_INSECT|B-AM\_BIRD|B-AM\_FISH|B-AM\_MAMMALIA|B-AM\_AMPHIBIA|B-AM\_REPTILIA|B-AM\_TYPE|B-AM\_PART|B-AM\_OTHERS|B-PT\_FRUIT|B-PT\_FLOWER|B-PT\_TREE|B-PT\_GRASS|B-PT\_TYPE|B-PT\_PART|B-PT\_OTHERS|B-MT\_ELEMENT|B-MT\_METAL|B-MT\_ROCK|B-MT\_CHEMICAL|B-TM\_COLOR|B-TM\_DIRECTION|B-TM\_CLIMATE|B-TM\_SHAPE|B-TM\_CELL\_TISSUE\_ORGAN|B-TMM\_DISEASE|B-TMM\_DRUG|B-TMI\_HW|B-TMI\_SW|B-TMI\_SITE|B-TMI\_EMAIL|B-TMI\_MODEL|B-TMI\_SERVICE|B-TMI\_PROJECT|B-TMIG\_GENRE|B-TM\_SPORTS|I-PS\_NAME|I-PS\_CHARACTER|I-PS\_PET|I-FD\_SCIENCE|I-FD\_SOCIAL\_SCIENCE|I-FD\_MEDICINE|I-FD\_ART|I-FD\_HUMANITIES|I-FD\_OTHERS|I-TR\_SCIENCE|I-TR\_SOCIAL\_SCIENCE|I-TR\_MEDICINE|I-TR\_ART|I-TR\_HUMANITIES|I-TR\_OTHERS|I-AF\_BUILDING|I-AF\_CULTURAL\_ASSET|I-AF\_ROAD|I-AF\_TRANSPORT|I-AF\_MUSICAL\_INSTRUMENT|I-AF\_WEAPON|I-AFA\_DOCUMENT|I-AFA\_PERFORMANCE|I-AFA\_VIDEO|I-AFA\_ART\_CRAFT|I-AFA\_MUSIC|I-AFW\_SERVICE\_PRODUCTS|I-AFW\_OTHER\_PRODUCTS|I-OGG\_ECONOMY|I-OGG\_EDUCATION|I-OGG\_MILITARY|I-OGG\_MEDIA|I-OGG\_SPORTS|I-OGG\_ART|I-OGG\_MEDICINE|I-OGG\_RELIGION|I-OGG\_SCIENCE|I-OGG\_LIBRARY|I-OGG\_LAW|I-OGG\_POLITICS|I-OGG\_FOOD|I-OGG\_HOTEL|I-OGG\_OTHERS|I-LCP\_COUNTRY|I-LCP\_PROVINCE|I-LCP\_COUNTY|I-LCP\_CITY|I-LCP\_CAPITALCITY|I-LCG\_RIVER|I-LCG\_OCEAN|I-LCG\_BAY|I-LCG\_MOUNTAIN|I-LCG\_ISLAND|I-LCG\_CONTINENT|I-LC\_SPACE|I-LC\_OTHERS|I-CV\_CULTURE|I-CV\_TRIBE|I-CV\_LANGUAGE|I-CV\_POLICY|I-CV\_LAW|I-CV\_CURRENCY|I-CV\_TAX|I-CV\_FUNDS|I-CV\_ART|I-CV\_SPORTS|I-CV\_SPORTS\_POSITION|I-CV\_SPORTS\_INST|I-CV\_PRIZE|I-CV\_RELATION|I-CV\_OCCUPATION|I-CV\_POSITION|I-CV\_FOOD|I-CV\_DRINK|I-CV\_FOOD\_STYLE|I-CV\_CLOTHING|I-CV\_BUILDING\_TYPE|I-DT\_DURATION|I-DT\_DAY|I-DT\_WEEK|I-DT\_MONTH|I-DT\_YEAR|I-DT\_SEASON|I-DT\_GEOAGE|I-DT\_DYNASTY|I-DT\_OTHERS|I-TI\_DURATION|I-TI\_HOUR|I-TI\_MINUTE|I-TI\_SECOND|I-TI\_OTHERS|I-QT\_AGE|I-QT\_SIZE|I-QT\_LENGTH|I-QT\_COUNT|I-QT\_MAN\_COUNT|I-QT\_WEIGHT|I-QT\_PERCENTAGE|I-QT\_SPEED|I-QT\_TEMPERATURE|I-QT\_VOLUME|I-QT\_ORDER|I-QT\_PRICE|I-QT\_PHONE|I-QT\_SPORTS|I-QT\_CHANNEL|I-QT\_ALBUM|I-QT\_ADDRESS|I-QT\_OTHERS|I-EV\_ACTIVITY|I-EV\_WAR\_REVOLUTION|I-EV\_SPORTS|I-EV\_FESTIVAL|I-EV\_OTHERS|I-AM\_INSECT|I-AM\_BIRD|I-AM\_FISH|I-AM\_MAMMALIA|I-AM\_AMPHIBIA|I-AM\_REPTILIA|I-AM\_TYPE|I-AM\_PART|I-AM\_OTHERS|I-PT\_FRUIT|I-PT\_FLOWER|I-PT\_TREE|I-PT\_GRASS|I-PT\_TYPE|I-PT\_PART|I-PT\_OTHERS|I-MT\_ELEMENT|I-MT\_METAL|I-MT\_ROCK|I-MT\_CHEMICAL|I-TM\_COLOR|I-TM\_DIRECTION|I-TM\_CLIMATE|I-TM\_SHAPE|I-TM\_CELL\_TISSUE\_ORGAN|I-TMM\_DISEASE|I-TMM\_DRUG|I-TMI\_HW|I-TMI\_SW|I-TMI\_SITE|I-TMI\_EMAIL|I-TMI\_MODEL|I-TMI\_SERVICE|I-TMI\_PROJECT|I-TMIG\_GENRE|I-TM\_SPORTS| |
|
|Number|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|61|62|63|64|65|66|67|68|69|70|71|72|73|74|75|76|77|78|79|80|81|82|83|84|85|86|87|88|89|90|91|92|93|94|95|96|97|98|99|100|101|102|103|104|105|106|107|108|109|110|111|112|113|114|115|116|117|118|119|120|121|122|123|124|125|126|127|128|129|130|131|132|133|134|135|136|137|138|139|140|141|142|143|144|145|146|147|148|149|150|151|152|153|154|155|156|157|158|159|160|161|162|163|164|165|166|167|168|169|170|171|172|173|174|175|176|177|178|179|180|181|182|183|184|185|186|187|188|189|190|191|192|193|194|195|196|197|198|199|200|201|202|203|204|205|206|207|208|209|210|211|212|213|214|215|216|217|218|219|220|221|222|223|224|225|226|227|228|229|230|231|232|233|234|235|236|237|238|239|240|241|242|243|244|245|246|247|248|249|250|251|252|253|254|255|256|257|258|259|260|261|262|263|264|265|266|267|268|269|270|271|272|273|274|275|276|277|278|279|280|281|282|283|284|285|286|287|288|289|290|291|292|293|294|295|296|297|298|299|300| |
|
|
|
Frequency Statistics |
|
|index|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33|34|35|36|37|38|39|40|41|42|43|44|45|46|47|48|49|50|51|52|53|54|55|56|57|58|59|60|61|62|63|64|65|66|67|68|69|70|71|72|73|74|75|76|77|78|79|80|81|82|83|84|85|86|87|88|89|90|91|92|93|94|95|96|97|98|99|100|101|102|103|104|105|106|107|108|109|110|111|112|113|114|115|116|117|118|119|120|121|122|123|124|125|126|127|128|129|130|131|132|133|134|135|136|137|138|139|140|141|142|143|144|145|146|147|148| |
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---| |
|
|Label|OGG\_POLITICS|CV\_POSITION|PS\_NAME|QT\_COUNT|LCP\_CITY|DT\_DAY|DT\_YEAR|LCP\_COUNTY|QT\_ORDER|DT\_OTHERS|TMM\_DISEASE|QT\_PRICE|QT\_MAN\_COUNT|DT\_DURATION|CV\_OCCUPATION|LC\_OTHERS|OGG\_ECONOMY|QT\_PERCENTAGE|OGG\_OTHERS|TMI\_PROJECT|LCP\_PROVINCE|AF\_TRANSPORT|OGG\_EDUCATION|LCP\_COUNTRY|EV\_OTHERS|AF\_BUILDING|CV\_LAW|TMI\_HW|OGG\_SPORTS|DT\_MONTH|CV\_RELATION|CV\_POLICY|CV\_FOOD|TI\_DURATION|TMI\_SERVICE|OGG\_MEDICINE|QT\_AGE|QT\_SIZE|AF\_ROAD|EV\_FESTIVAL|AM\_PART|EV\_SPORTS|CV\_PRIZE|TR\_SCIENCE|TM\_DIRECTION|OGG\_ART|QT\_OTHERS|PT\_GRASS|QT\_LENGTH|MT\_CHEMICAL|OGG\_SCIENCE|PT\_FRUIT|LCP\_CAPITALCITY|CV\_SPORTS|TMM\_DRUG|CV\_ART|LCG\_RIVER|AF\_CULTURAL\_ASSET|TM\_CELL\_TISSUE\_ORGAN|OGG\_RELIGION|QT\_SPORTS|QT\_WEIGHT|DT\_SEASON|AFA\_DOCUMENT|OGG\_MEDIA|TI\_OTHERS|TI\_HOUR|OGG\_MILITARY|LCG\_ISLAND|CV\_DRINK|LCG\_MOUNTAIN|CV\_TAX|CV\_FUNDS|TR\_MEDICINE|AFA\_VIDEO|AM\_MAMMALIA|OGG\_FOOD|MT\_ELEMENT|TM\_SPORTS|AM\_OTHERS|LCG\_CONTINENT|PT\_PART|OGG\_LAW|AFW\_OTHER\_PRODUCTS|CV\_CULTURE|AFW\_SERVICE\_PRODUCTS|CV\_CLOTHING|DT\_DYNASTY|FD\_MEDICINE|PT\_FLOWER|CV\_TRIBE|PT\_TREE|FD\_SCIENCE|TM\_COLOR|AM\_BIRD|QT\_ADDRESS|QT\_PHONE|CV\_LANGUAGE|TR\_SOCIAL\_SCIENCE|EV\_ACTIVITY|EV\_WAR\_REVOLUTION|CV\_SPORTS\_POSITION|OGG\_LIBRARY|AM\_TYPE|TMI\_SW|AFA\_MUSIC|DT\_WEEK|AFA\_PERFORMANCE|AFA\_ART\_CRAFT|FD\_HUMANITIES|QT\_VOLUME|TMI\_SITE|OGG\_HOTEL|LCG\_BAY|PS\_CHARACTER|LCG\_OCEAN|AM\_INSECT|AM\_FISH|QT\_TEMPERATURE|PT\_OTHERS|TM\_SHAPE|MT\_METAL|MT\_ROCK|AF\_MUSICAL\_INSTRUMENT|PT\_TYPE|QT\_SPEED|AF\_WEAPON|CV\_FOOD\_STYLE|LC\_SPACE|FD\_SOCIAL\_SCIENCE|CV\_SPORTS\_INST|TR\_ART|FD\_OTHERS|AM\_AMPHIBIA|AM\_REPTILIA|TMIG\_GENRE|TR\_OTHERS|TMI\_EMAIL|CV\_BUILDING\_TYPE|PS\_PET|TR\_HUMANITIES|DT\_GEOAGE|FD\_ART|CV\_CURRENCY|TMI\_MODEL|TI\_SECOND|QT\_CHANNEL|TM\_CLIMATE|TI\_MINUTE| |
|
|Frequency|69683|43695|42060|30949|24791|19994|19836|19376|17908|17768|17622|15686|15460|15385|13634|13473|12744|12129|9912|9249|9084|8689|7475|7378|6144|5193|4875|4458|4440|4360|4002|3944|3537|3277|2993|2803|2659|2523|2465|2407|2401|2400|2231|2145|1999|1914|1911|1617|1615|1602|1589|1515|1395|1322|1307|1289|1258|1244|1165|1157|1145|1110|1097|987|980|979|976|967|937|884|869|859|857|855|837|775|752|720|715|689|688|683|667|631|583|505|467|453|445|441|437|410|395|391|391|388|383|370|367|367|362|337|304|296|285|283|275|273|265|245|240|229|222|220|220|204|192|191|188|158|151|149|148|130|126|124|113|110|107|82|52|43|42|41|40|37|35|34|30|25|22|19|19|11|8|8|5|3|2| |
|
|
|
|
|
### Data Splits |
|
The dataset, consisting of 150,142 sentences, has been split in a ratio of 8:2. There are 120,113 sentences in the training set and 3,029 sentences in the test set. |
|
|
|
## Source Data |
|
This dataset is based on the 'National Institute of Korean Language Named Entity Analysis Corpus 2022 (Version 1.1)' released by the National Institute of Korean Language in September 2023. |
|
For more detailed information, please refer to the National Institute of Korean Language website > Resources > Research Materials > '2022 Corpus Named Entity Analysis and Entity Linking' project report. |
|
|
|
### Citation |
|
(국문) 국립국어원(2023). 국립국어원 개체명 분석 말뭉치 2022(버전 1.1) URL: https://corpus.korean.go.kr |
|
(Eng) National Institute of Korean Language(2023). NIKL Named Entity Corpus 2022 (v.1.1) URL: https://corpus.korean.go.kr |