Yuhan Hou
commited on
Commit
·
02ffd0b
1
Parent(s):
ba561f7
My commit
Browse files- FracAtlas_dataset.py +0 -257
FracAtlas_dataset.py
DELETED
@@ -1,257 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
# -*- coding: utf-8 -*-
|
3 |
-
"""
|
4 |
-
Created on Sun Feb 18 23:13:51 2024
|
5 |
-
|
6 |
-
@author: houyuhan
|
7 |
-
"""
|
8 |
-
|
9 |
-
|
10 |
-
#Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
11 |
-
#
|
12 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
13 |
-
# you may not use this file except in compliance with the License.
|
14 |
-
# You may obtain a copy of the License at
|
15 |
-
#
|
16 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
17 |
-
#
|
18 |
-
# Unless required by applicable law or agreed to in writing, software
|
19 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
20 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
21 |
-
# See the License for the specific language governing permissions and
|
22 |
-
# limitations under the License.
|
23 |
-
"""
|
24 |
-
FracAtlas Dataset Loader
|
25 |
-
|
26 |
-
This script provides a Hugging Face `datasets` loader for the FracAtlas dataset, a comprehensive collection
|
27 |
-
of musculoskeletal radiographs aimed at advancing research in fracture classification, localization, and segmentation.
|
28 |
-
The dataset includes high-quality X-Ray images accompanied by detailed annotations in COCO JSON format for segmentation
|
29 |
-
and bounding box information, as well as PASCAL VOC XML files for additional localization data.
|
30 |
-
|
31 |
-
The loader handles downloading and preparing the dataset, making it readily available for machine learning models and analysis
|
32 |
-
tasks in medical imaging, especially focusing on the detection and understanding of bone fractures.
|
33 |
-
|
34 |
-
License: CC-BY 4.0
|
35 |
-
"""
|
36 |
-
|
37 |
-
|
38 |
-
import csv
|
39 |
-
import json
|
40 |
-
import os
|
41 |
-
from typing import List
|
42 |
-
import datasets
|
43 |
-
import logging
|
44 |
-
import pandas as pd
|
45 |
-
from sklearn.model_selection import train_test_split
|
46 |
-
import shutil
|
47 |
-
import xml.etree.ElementTree as ET
|
48 |
-
from datasets import load_dataset
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
# TODO: Add BibTeX citation
|
53 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
54 |
-
_CITATION = """\
|
55 |
-
@InProceedings{huggingface:yh0701/FracAtlas_dataset,
|
56 |
-
title = {FracAtlas: A Dataset for Fracture Classification, Localization and Segmentation of Musculoskeletal Radiographs},
|
57 |
-
author={Abedeen, Iftekharul; Rahman, Md. Ashiqur; Zohra Prottyasha, Fatema; Ahmed, Tasnim; Mohmud Chowdhury, Tareque; Shatabda, Swakkhar},
|
58 |
-
year={2023}
|
59 |
-
}
|
60 |
-
"""
|
61 |
-
|
62 |
-
# TODO: Add description of the dataset here
|
63 |
-
# You can copy an official description
|
64 |
-
_DESCRIPTION = """\
|
65 |
-
The "FracAtlas" dataset is a collection of musculoskeletal radiographs for fracture classification, localization, and segmentation.
|
66 |
-
It includes 4,083 X-Ray images with annotations in multiple formats.The annotations include bbox, segmentations, and etc.
|
67 |
-
The dataset is intended for use in deep learning tasks in medical imaging, specifically targeting the understanding of bone fractures.
|
68 |
-
It is freely available under a CC-BY 4.0 license.
|
69 |
-
"""
|
70 |
-
|
71 |
-
# TODO: Add a link to an official homepage for the dataset here
|
72 |
-
_HOMEPAGE = "https://figshare.com/articles/dataset/The_dataset/22363012"
|
73 |
-
|
74 |
-
# TODO: Add the licence for the dataset here if you can find it
|
75 |
-
_LICENSE = "The dataset is licensed under a CC-BY 4.0 license."
|
76 |
-
|
77 |
-
# TODO: Add link to the official dataset URLs here
|
78 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
79 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
80 |
-
_URL = "https://figshare.com/ndownloader/files/43283628"
|
81 |
-
|
82 |
-
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
83 |
-
class FracAtlasDataset(datasets.GeneratorBasedBuilder):
|
84 |
-
"""TODO: Short description of my dataset."""
|
85 |
-
|
86 |
-
_URL = _URL
|
87 |
-
VERSION = datasets.Version("1.1.0")
|
88 |
-
|
89 |
-
def _info(self):
|
90 |
-
return datasets.DatasetInfo(
|
91 |
-
description=_DESCRIPTION,
|
92 |
-
features=datasets.Features(
|
93 |
-
{
|
94 |
-
"image_id": datasets.Value("string"),
|
95 |
-
"image": datasets.Image(),
|
96 |
-
"hand": datasets.ClassLabel(num_classes=2,names=['no_hand_fracture','hand_fracture']),
|
97 |
-
"leg": datasets.ClassLabel(num_classes=2,names=['no_leg_fracture','leg_fracture']),
|
98 |
-
"hip": datasets.ClassLabel(num_classes=2,names=['no_hip_fracture','hip_fracture']),
|
99 |
-
"shoulder": datasets.ClassLabel(num_classes=2,names=['no_shoulder_fracture','shoulder_fracture']),
|
100 |
-
"mixed": datasets.ClassLabel(num_classes=2,names=['not_mixed','mixed']),
|
101 |
-
"hardware": datasets.ClassLabel(num_classes=2,names=['no_hardware','hardware']),
|
102 |
-
"multiscan": datasets.ClassLabel(num_classes=2,names=['not_multiscan','multiscan']),
|
103 |
-
"fractured": datasets.ClassLabel(num_classes=2,names=['not_fractured','fractured']),
|
104 |
-
"fracture_count": datasets.Value("int32"),
|
105 |
-
"frontal": datasets.ClassLabel(num_classes=2,names=['not_frontal','frontal']),
|
106 |
-
"lateral": datasets.ClassLabel(num_classes=2,names=['not_lateral','lateral']),
|
107 |
-
"oblique": datasets.ClassLabel(num_classes=2,names=['not_oblique','oblique']),
|
108 |
-
"localization_metadata": datasets.Features({
|
109 |
-
"width": datasets.Value("int32"),
|
110 |
-
"height": datasets.Value("int32"),
|
111 |
-
"depth": datasets.Value("int32"),
|
112 |
-
}),
|
113 |
-
"segmentation_metadata": datasets.Features({
|
114 |
-
"segmentation": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
|
115 |
-
"bbox": datasets.Sequence(datasets.Value("float")),
|
116 |
-
"area": datasets.Value("float")
|
117 |
-
}) or None
|
118 |
-
}
|
119 |
-
),
|
120 |
-
# No default supervised_keys (as we have to pass both question
|
121 |
-
# and context as input).
|
122 |
-
supervised_keys=None,
|
123 |
-
homepage=_HOMEPAGE,
|
124 |
-
citation=_CITATION
|
125 |
-
)
|
126 |
-
|
127 |
-
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
128 |
-
url_to_download = self._URL
|
129 |
-
downloaded_files = dl_manager.download_and_extract(url_to_download)
|
130 |
-
|
131 |
-
# Adjusted path to include 'FracAtlas' directory
|
132 |
-
base_path = os.path.join(downloaded_files, 'FracAtlas')
|
133 |
-
|
134 |
-
# Split the dataset to train/test/validation by 0.7,0.15,0.15
|
135 |
-
df = pd.read_csv(os.path.join(base_path, 'dataset.csv'))
|
136 |
-
train_df, test_df = train_test_split(df, test_size=0.3)
|
137 |
-
validation_df, test_df = train_test_split(test_df, test_size=0.5)
|
138 |
-
|
139 |
-
# store them back as csv
|
140 |
-
train_df.to_csv(os.path.join(base_path, 'train_dataset.csv'), index=False)
|
141 |
-
validation_df.to_csv(os.path.join(base_path, 'validation_dataset.csv'), index=False)
|
142 |
-
test_df.to_csv(os.path.join(base_path, 'test_dataset.csv'), index=False)
|
143 |
-
|
144 |
-
annotations_path = os.path.join(base_path, 'Annotations/COCO JSON/COCO_fracture_masks.json')
|
145 |
-
images_path = os.path.join(base_path, 'images')
|
146 |
-
localization_path = os.path.join(base_path, 'Annotations/PASCAL VOC')
|
147 |
-
|
148 |
-
return [
|
149 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"dataset_csv_path": os.path.join(base_path, 'train_dataset.csv'),
|
150 |
-
"images_path": images_path,
|
151 |
-
"annotations_path": annotations_path,
|
152 |
-
"localization_path":localization_path
|
153 |
-
}),
|
154 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"dataset_csv_path": os.path.join(base_path, 'validation_dataset.csv'),
|
155 |
-
"images_path": images_path,
|
156 |
-
"annotations_path": annotations_path,
|
157 |
-
"localization_path":localization_path
|
158 |
-
}),
|
159 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"dataset_csv_path": os.path.join(base_path, 'test_dataset.csv'),
|
160 |
-
"images_path": images_path,
|
161 |
-
"annotations_path": annotations_path,
|
162 |
-
"localization_path":localization_path
|
163 |
-
})
|
164 |
-
]
|
165 |
-
|
166 |
-
def _generate_examples(self, annotations_path, images_path, dataset_csv_path,localization_path):
|
167 |
-
logging.info("Generating examples from = %s", dataset_csv_path)
|
168 |
-
split_df = pd.read_csv(dataset_csv_path) # Load the DataFrame for the current split
|
169 |
-
|
170 |
-
# Function to convert numeric ID to formatted string
|
171 |
-
def format_image_id(numeric_id):
|
172 |
-
return f"IMG{numeric_id:07d}.jpg" # Adjust format as needed
|
173 |
-
|
174 |
-
# Function to extract information from xml files
|
175 |
-
def parse_xml(xml_path):
|
176 |
-
tree = ET.parse(xml_path)
|
177 |
-
root = tree.getroot()
|
178 |
-
|
179 |
-
# Extract the necessary information
|
180 |
-
width = int(root.find("./size/width").text)
|
181 |
-
height = int(root.find("./size/height").text)
|
182 |
-
depth = int(root.find("./size/depth").text)
|
183 |
-
segmented = int(root.find("./segmented").text)
|
184 |
-
return width, height, depth, segmented
|
185 |
-
|
186 |
-
# Load annotations
|
187 |
-
with open(annotations_path) as file:
|
188 |
-
annotations_json = json.load(file)
|
189 |
-
|
190 |
-
for item in annotations_json['annotations']:
|
191 |
-
item['image_id'] = format_image_id(item['image_id'])
|
192 |
-
|
193 |
-
annotations = {item['image_id']: item for item in annotations_json['annotations']}
|
194 |
-
|
195 |
-
|
196 |
-
# Iterate through each row in the split DataFrame
|
197 |
-
for _, row in split_df.iterrows():
|
198 |
-
image_id = row['image_id']
|
199 |
-
# Determine the folder based on the 'fractured' column
|
200 |
-
folder = 'Fractured' if row['fractured'] == 1 else 'Non_fractured'
|
201 |
-
|
202 |
-
# Check if the formatted_image_id exists in annotations
|
203 |
-
annotation = annotations.get(image_id)
|
204 |
-
image_path = os.path.join(images_path, folder, image_id)
|
205 |
-
|
206 |
-
# Initialize variables
|
207 |
-
segmentation, bbox, area = None, None, None
|
208 |
-
segmentation_metadata = None
|
209 |
-
|
210 |
-
if annotation:
|
211 |
-
segmentation = annotation.get('segmentation')
|
212 |
-
bbox = annotation.get('bbox')
|
213 |
-
area = annotation.get('area')
|
214 |
-
|
215 |
-
segmentation_metadata = {
|
216 |
-
'segmentation': segmentation,
|
217 |
-
'bbox':bbox,
|
218 |
-
'area': area
|
219 |
-
}
|
220 |
-
else:
|
221 |
-
segmentation_metadata = None # Default if not present
|
222 |
-
|
223 |
-
xml_file_name = f"{image_id.split('.')[0]}.xml"
|
224 |
-
xml_path = os.path.join(localization_path, xml_file_name)
|
225 |
-
|
226 |
-
# Parse the XML file
|
227 |
-
width, height, depth, _ = parse_xml(xml_path)
|
228 |
-
|
229 |
-
localization_metadata = {
|
230 |
-
'width': width,
|
231 |
-
"height":height,
|
232 |
-
'depth': depth
|
233 |
-
}
|
234 |
-
|
235 |
-
|
236 |
-
# Construct example data
|
237 |
-
example_data = {
|
238 |
-
"image_id": row['image_id'],
|
239 |
-
"image":image_path,
|
240 |
-
"hand": row["hand"],
|
241 |
-
"leg": row["leg"],
|
242 |
-
"hip": row["hip"],
|
243 |
-
"shoulder": row["shoulder"],
|
244 |
-
"mixed": row["mixed"],
|
245 |
-
"hardware": row["hardware"],
|
246 |
-
"multiscan": row["multiscan"],
|
247 |
-
"fractured": row["fractured"],
|
248 |
-
"fracture_count": row["fracture_count"],
|
249 |
-
"frontal": row["frontal"],
|
250 |
-
"lateral": row["lateral"],
|
251 |
-
"oblique": row["oblique"],
|
252 |
-
"localization_metadata": localization_metadata,
|
253 |
-
'segmentation_metadata': segmentation_metadata
|
254 |
-
}
|
255 |
-
yield image_id, example_data
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|