Datasets:
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
import os | |
import datasets | |
_DESCRIPTION = """\ | |
CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB | |
We show that margin-based bitext mining in LASER's multilingual sentence space can be applied to | |
monolingual corpora of billions of sentences to produce high quality aligned translation data. | |
We use thirty-two snapshots of a curated common crawl corpus [1] totaling 69 billion unique sentences. | |
Using one unified approach for 80 languages, we were able to mine 10.8 billion parallel sentences, | |
out of which only 2.9 billion are aligned with English. | |
IMPORTANT: Please cite reference [2][3] if you use this data. | |
[1] Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán, Armand Jouli | |
and Edouard Grave, CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data | |
[2] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave and Armand Joulin, | |
CCMatrix: Mining Billions of High-Quality Parallel Sentences on the WEB | |
[3] Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, | |
Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, | |
Sergey Edunov, Edouard Grave, Michael Auli, and Armand Joulin. | |
Beyond English-Centric Multilingual Machine Translation | |
90 languages, 1,197 bitexts | |
total number of files: 90 | |
total number of tokens: 112.14G | |
total number of sentence fragments: 7.37G | |
""" | |
_HOMEPAGE_URL = "https://opus.nlpl.eu/CCMatrix.php" | |
_CITATION = """\ | |
Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán, Armand Jouli and Edouard Grave, CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data | |
""" | |
_VERSION = "1.0.0" | |
_FILE = "CCMatrix.{}.{}" # E.g. CCMatrix.en-nl.nl | |
_DOWNLOAD_URL = "https://opus.nlpl.eu/download.php?f=CCMatrix/v1/moses/{}.txt.zip" | |
_LANGUAGES = ["nl", "en", "de", "fr", "es", "lt", "it"] | |
_LANGUAGE_PAIRS = [(l1, l2) for l1 in _LANGUAGES for l2 in _LANGUAGES if l1 != l2] | |
_SIZES = ["", "1000_000", "25_000_000"] | |
_CONFIGS = [(l1, l2, size) for (l1, l2) in _LANGUAGE_PAIRS for size in _SIZES] | |
class CCMatrixConfig(datasets.BuilderConfig): | |
def __init__(self, *args, lang1=None, lang2=None, size=None, **kwargs): | |
super().__init__( | |
*args, | |
name=f"{lang1}-{lang2}{'-' + size if size else ''}", | |
**kwargs, | |
) | |
self.lang1 = lang1 | |
self.lang2 = lang2 | |
self.size = size | |
x, y = (lang1, lang2) if lang1 < lang2 else (lang2, lang1) | |
self.download_pair = f"{x}-{y}" | |
class CCMatrix(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
CCMatrixConfig( | |
lang1=lang1, | |
lang2=lang2, | |
size=size, | |
description=f"Translating {lang1} to {lang2} or vice versa{ ' ' + size + ' rows' if size else ''}", | |
version=datasets.Version(_VERSION), | |
) | |
for lang1, lang2, size in _CONFIGS | |
] | |
BUILDER_CONFIG_CLASS = CCMatrixConfig | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"score": datasets.Value("float"), | |
"translation": datasets.Translation( | |
languages=(self.config.lang1, self.config.lang2) | |
), | |
}, | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE_URL, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
download_url = _DOWNLOAD_URL.format(self.config.download_pair) | |
path = dl_manager.download_and_extract(download_url) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"datapath": path}, | |
) | |
] | |
def _generate_examples(self, datapath): | |
l1_path = os.path.join( | |
datapath, _FILE.format(self.config.download_pair, self.config.lang1) | |
) | |
l2_path = os.path.join( | |
datapath, _FILE.format(self.config.download_pair, self.config.lang2) | |
) | |
scores_path = os.path.join( | |
datapath, _FILE.format(self.config.download_pair, "scores") | |
) | |
with open(l1_path, encoding="utf-8") as f1, open( | |
l2_path, encoding="utf-8" | |
) as f2, open(scores_path, encoding="utf-8") as f3: | |
for sentence_counter, (x, y, score) in enumerate(zip(f1, f2, f3)): | |
if self.config.size and sentence_counter == int(self.config.size): | |
return | |
result = ( | |
sentence_counter, | |
{ | |
"id": sentence_counter, | |
"score": score, | |
"translation": { | |
self.config.lang1: x.strip(), | |
self.config.lang2: y.strip(), | |
}, | |
}, | |
) | |
yield result | |