Datasets:
Yeb Havinga
commited on
Commit
Β·
56b7cad
1
Parent(s):
5b9af41
Renamed validation files back to '-validation'
Browse files- README.md +22 -3
- mc4_nl_cleaned.py +3 -2
- mc4_nl_cleaned/validation/{c4-nl-cleaned.tfrecord-00000-of-00004.json.gz β c4-nl-validation-cleaned.tfrecord-00000-of-00004.json.gz} +0 -0
- mc4_nl_cleaned/validation/{c4-nl-cleaned.tfrecord-00001-of-00004.json.gz β c4-nl-validation-cleaned.tfrecord-00001-of-00004.json.gz} +0 -0
- mc4_nl_cleaned/validation/{c4-nl-cleaned.tfrecord-00002-of-00004.json.gz β c4-nl-validation-cleaned.tfrecord-00002-of-00004.json.gz} +0 -0
- mc4_nl_cleaned/validation/{c4-nl-cleaned.tfrecord-00003-of-00004.json.gz β c4-nl-validation-cleaned.tfrecord-00003-of-00004.json.gz} +0 -0
README.md
CHANGED
@@ -94,7 +94,7 @@ In summary, the preprocessing procedure includes:
|
|
94 |
- Not identified as prevalently Dutch by the `LangDetect` package.
|
95 |
|
96 |
Using parallel processing with 96 CPU cores on a TPUv3 via Google Cloud to perform the complete clean of all the original Dutch
|
97 |
-
shards of mC4 (1024 of ~220Mb train,
|
98 |
tokenization and language detection. The total size of compressed `.json.gz` files is roughly halved after the procedure.
|
99 |
|
100 |
## Dataset Structure
|
@@ -121,13 +121,16 @@ The data contains the following fields:
|
|
121 |
|
122 |
### Data Splits
|
123 |
|
124 |
-
To build mC4, the original authors used [CLD3](https://github.com/google/cld3) to identify over 100 languages.
|
|
|
|
|
|
|
125 |
|
126 |
For ease of use under different storage capacities, the following incremental splits are available (sizes are estimates). **Important**: The sizes in GB represent the estimated weight for :
|
127 |
|
128 |
|split |train size (docs, words, download + preproc disk space)|validation size|
|
129 |
|:-----|------------------------------------------------------:|--------------:|
|
130 |
-
|tiny |
|
131 |
|small | 20M docs, 8B words (18 GB + 54 GB) | 24k docs |
|
132 |
|medium| 50M docs, 20B words (47 GB + 135 GB) | 48k docs |
|
133 |
|large | 75M docs, 30B words (71 GB + 203 GB) | 72k docs |
|
@@ -139,6 +142,22 @@ You can load any subset like this:
|
|
139 |
from datasets import load_dataset
|
140 |
|
141 |
datasets = load_dataset('yhavinga/mc4_nl_cleaned', 'tiny', streaming=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
```
|
143 |
|
144 |
Since splits are quite large, you may want to traverse them using the streaming mode available starting from β Datasets v1.9.0:
|
|
|
94 |
- Not identified as prevalently Dutch by the `LangDetect` package.
|
95 |
|
96 |
Using parallel processing with 96 CPU cores on a TPUv3 via Google Cloud to perform the complete clean of all the original Dutch
|
97 |
+
shards of mC4 (1024 of ~220Mb train, 4 of ~24Mb validation) required roughly 10 hours due to the demanding steps of sentence
|
98 |
tokenization and language detection. The total size of compressed `.json.gz` files is roughly halved after the procedure.
|
99 |
|
100 |
## Dataset Structure
|
|
|
121 |
|
122 |
### Data Splits
|
123 |
|
124 |
+
To build mC4, the original authors used [CLD3](https://github.com/google/cld3) to identify over 100 languages.
|
125 |
+
For Dutch, the whole corpus of scraped text was divided in `1032` jsonl files, `1024` for training following
|
126 |
+
the naming style `c4-nl-cleaned.tfrecord-0XXXX-of-01024.json.gz` and 4 for validation following the
|
127 |
+
naming style `c4-nl-cleaned.tfrecord-0000X-of-00004.json.gz`. The full set of preprocessed files takes roughly 215GB of disk space to download with Git LFS.
|
128 |
|
129 |
For ease of use under different storage capacities, the following incremental splits are available (sizes are estimates). **Important**: The sizes in GB represent the estimated weight for :
|
130 |
|
131 |
|split |train size (docs, words, download + preproc disk space)|validation size|
|
132 |
|:-----|------------------------------------------------------:|--------------:|
|
133 |
+
|tiny | 6M docs, 4B words (9 GB + 27 GB) | 16k docs |
|
134 |
|small | 20M docs, 8B words (18 GB + 54 GB) | 24k docs |
|
135 |
|medium| 50M docs, 20B words (47 GB + 135 GB) | 48k docs |
|
136 |
|large | 75M docs, 30B words (71 GB + 203 GB) | 72k docs |
|
|
|
142 |
from datasets import load_dataset
|
143 |
|
144 |
datasets = load_dataset('yhavinga/mc4_nl_cleaned', 'tiny', streaming=True)
|
145 |
+
print(datasets)
|
146 |
+
```
|
147 |
+
|
148 |
+
Yields output
|
149 |
+
|
150 |
+
```
|
151 |
+
DatasetDict({
|
152 |
+
train: Dataset({
|
153 |
+
features: ['text', 'timestamp', 'url'],
|
154 |
+
num_rows: 6303893
|
155 |
+
})
|
156 |
+
validation: Dataset({
|
157 |
+
features: ['text', 'timestamp', 'url'],
|
158 |
+
num_rows: 16189
|
159 |
+
})
|
160 |
+
})
|
161 |
```
|
162 |
|
163 |
Since splits are quite large, you may want to traverse them using the streaming mode available starting from β Datasets v1.9.0:
|
mc4_nl_cleaned.py
CHANGED
@@ -49,11 +49,11 @@ _HOMEPAGE = "https://github.com/allenai/allennlp/discussions/5056"
|
|
49 |
|
50 |
_LICENSE = "Open Data Commons Attribution License (ODC-By) v1.0"
|
51 |
|
52 |
-
_BASE_URL = "https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned/resolve/main/mc4_nl_cleaned/{split}/c4-nl-cleaned.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz"
|
53 |
|
54 |
_CONFIGS = dict(
|
55 |
tiny={"train": 100, "validation": 1},
|
56 |
-
small={"train": 250, "validation":
|
57 |
medium={"train": 500, "validation": 2},
|
58 |
large={"train": 750, "validation": 3},
|
59 |
full={"train": 1024, "validation": 4},
|
@@ -150,6 +150,7 @@ class Mc4(datasets.GeneratorBasedBuilder):
|
|
150 |
_BASE_URL.format(
|
151 |
split=split,
|
152 |
index=index,
|
|
|
153 |
n_shards=4 if split == "validation" else 1024,
|
154 |
)
|
155 |
for index in range(_CONFIGS[self.config.name][split])
|
|
|
49 |
|
50 |
_LICENSE = "Open Data Commons Attribution License (ODC-By) v1.0"
|
51 |
|
52 |
+
_BASE_URL = "https://huggingface.co/datasets/yhavinga/mc4_nl_cleaned/resolve/main/mc4_nl_cleaned/{split}/c4-nl{validation}-cleaned.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz"
|
53 |
|
54 |
_CONFIGS = dict(
|
55 |
tiny={"train": 100, "validation": 1},
|
56 |
+
small={"train": 250, "validation": 1},
|
57 |
medium={"train": 500, "validation": 2},
|
58 |
large={"train": 750, "validation": 3},
|
59 |
full={"train": 1024, "validation": 4},
|
|
|
150 |
_BASE_URL.format(
|
151 |
split=split,
|
152 |
index=index,
|
153 |
+
validation="-validation" if split=="validation" else "",
|
154 |
n_shards=4 if split == "validation" else 1024,
|
155 |
)
|
156 |
for index in range(_CONFIGS[self.config.name][split])
|
mc4_nl_cleaned/validation/{c4-nl-cleaned.tfrecord-00000-of-00004.json.gz β c4-nl-validation-cleaned.tfrecord-00000-of-00004.json.gz}
RENAMED
File without changes
|
mc4_nl_cleaned/validation/{c4-nl-cleaned.tfrecord-00001-of-00004.json.gz β c4-nl-validation-cleaned.tfrecord-00001-of-00004.json.gz}
RENAMED
File without changes
|
mc4_nl_cleaned/validation/{c4-nl-cleaned.tfrecord-00002-of-00004.json.gz β c4-nl-validation-cleaned.tfrecord-00002-of-00004.json.gz}
RENAMED
File without changes
|
mc4_nl_cleaned/validation/{c4-nl-cleaned.tfrecord-00003-of-00004.json.gz β c4-nl-validation-cleaned.tfrecord-00003-of-00004.json.gz}
RENAMED
File without changes
|