import numpy as np import pandas as pd from bs4 import BeautifulSoup import os import re from lxml.html.clean import Cleaner import json def clean_html(raw_html): cleaner = Cleaner(remove_tags=["sup"]) return cleaner.clean_html(raw_html).decode("utf-8") EMPTY = "[EMPTY]" def isYear(value): for i in range(1990, 2022): if str(i) in value: return True return False def existTopHeaders(html): first_row = html.tr if first_row.td.string == None: return True for td in first_row.find_all("td"): if not td.string: continue value = td.string.replace(",", "").strip() if value: try: float(value[1:]) if isYear(value): return True else: return False except: continue return True def belongToTopHeaders(row): for i, td in enumerate(row.find_all("td")): if not td.string: continue value = td.string.replace(",", "").strip() if value: try: float(value[1:]) if isYear(value): return True else: return False except: continue return True def handle_unnamed_single_topheader(columns, j): tmp = j while tmp < len(columns) and (columns[tmp].startswith("Unnamed") or columns[tmp] == EMPTY): tmp += 1 if tmp < len(columns): return columns[tmp] tmp = j while tmp >= 0 and (columns[tmp].startswith("Unnamed") or columns[tmp] == EMPTY): tmp -= 1 if tmp < 0: return f"data {j}" else: return columns[tmp] def handle_unnamed_multi_topheader(columns, j): tmp = j while tmp < len(columns) and (columns[tmp][0].startswith("Unnamed") or columns[tmp][0] == EMPTY): tmp += 1 if tmp < len(columns): return columns[tmp][0] tmp = j while tmp >= 0 and (columns[tmp][0].startswith("Unnamed") or columns[tmp][0] == EMPTY): tmp -= 1 if tmp < 0: return f"data {j}" else: return columns[tmp][0] def readHTML(html_string): # file_path = html_path html = BeautifulSoup(html_string, features='html.parser') # remove superscripts and subscripts for sup in html.select('sup'): sup.extract() for sup in html.select('sub'): sup.extract() # 1. locate top header top_header_nonexist_flag = 0 if not existTopHeaders(html): top_header_nonexist_flag = 1 new_tr_tag = html.new_tag("tr") new_td_tag = html.new_tag("td") new_tr_tag.insert(0, new_td_tag) for i in range(len(html.tr.find_all("td")[1:])): new_td_tag1 = html.new_tag("td") new_td_tag1.string = f"data{i}" new_tr_tag.insert(i+1, new_td_tag1) html.table.insert(0, new_tr_tag) else: html.tr.td.string = "" header = [0] top_header_flag = True for i, tr in enumerate(html.find_all("tr")): # # for locating top header # if tr.td.string and ("in thousands" in tr.td.string.lower() or "in millions" in tr.td.string.lower()) and len(tr.td.string) < len("in thousands") + 5: # tr.td.replace_with(html.new_tag("td")) if top_header_flag and i > 0 and not top_header_nonexist_flag: if belongToTopHeaders(tr): header.append(i) else: top_header_flag = False # for locating left header if tr.td.string != None: for td in tr.find_all("td")[1:]: if td.string == None: td.string = EMPTY data = pd.read_html(str(html), header=header, index_col=0)[0] return data, header, top_header_nonexist_flag def generateDescription(data, header, top_header_nonexist_flag): describe_dict = {} for i in range(data.shape[0]): for j in range(data.shape[1]): value = data.iloc[i, j] if str(value).startswith("Unnamed") or str(value) == EMPTY or str(value) == "-" or str(value) == u'\u2014': continue describe = "" if pd.isnull(data.index[i]): describe += "total" else: describe += f"{data.index[i]}" temp_i = i - 1 while temp_i >= 0: if (data.iloc[temp_i] == EMPTY).all(): describe += f" {data.index[temp_i]}" break temp_i -= 1 if not top_header_nonexist_flag: describe += " of" if len(header) == 1: describe += f" {handle_unnamed_single_topheader(data.columns, j)}" else: describe += f" {handle_unnamed_multi_topheader(data.columns, j)}" prev = handle_unnamed_multi_topheader(data.columns, j) for temp_j in header[1:]: if data.columns[j][temp_j].startswith("Unnamed") or data.columns[j][temp_j] == EMPTY: continue if data.columns[j][temp_j] == prev: continue describe += f" {data.columns[j][temp_j]}" prev = data.columns[j][temp_j] describe += f" is {data.iloc[i, j]}." x_index = i+len(header) y_index = j+1 if top_header_nonexist_flag == 1: x_index -= 1 describe_dict[f"{x_index}-{y_index}"] = describe return describe_dict def generateDiscreptionCell(data, header, top_header_nonexist_flag): discribe_dict = {} for i in range(data.shape[0]): for j in range(data.shape[1]): value = data.iloc[i, j] if str(value).startswith("Unnamed") or str(value) == "-" or str(value) == "[EMPTY]": continue discribe = f"{data.iloc[i, j]}" x_index = i+len(header) y_index = j+1 if top_header_nonexist_flag == 1: x_index -= 1 discribe_dict[f"{x_index}-{y_index}"] = discribe return discribe_dict