--- language: en license: mit source_datasets: https://doi.org/10.1016/j.cell.2024.03.027 task_categories: - tabular-classification tags: - drug_discovery - cysteine - chemistry - biology pretty_name: Cysteine Structure Database dataset_summary: >- structural data regarding ligandabale and non ligandable cysteins in ~6000 proteins along with probe interaction read outs. PROBE indicates one of three probes KB02, KB03, or KB05 citation: |- @article{ Takahashi_et_al_2024, author={Takahashi, Chong, Harrison, Bar-Peled, et al}, doi={10.1016/j.cell.2024.03.027}, journal={Cell}, number={10}, month={May} title={DrugMap: A quantitative pan-cancer analysis of Cysteine ligandability}, volume={187}, year={2024} url = {https://www.biorxiv.org/content/10.1101/2023.10.20.563287v1} } size_categories: - 1K>> import datasets and load one of the `Cysteine Structure Database` datasets, e.g., >>> KB03_data = datasets.load_dataset('ymanasa2000/DrugMap_Ligandability', name='KB03') Downloading readme: 100%|████████████████████████| 4.04k/4.04k [00:00<00:00, 281kB/s] Downloading data: 100%|████████████████████████| 30.5k/30.5k [00:00<00:00, 470kB/s] Downloading data: 100%|████████████████████████| 218k/218k [00:00<00:00, 2.55MB/s] Downloading data: 100%|████████████████████████| 54.8k/54.8k [00:00<00:00, 915kB/s] Generating test split: 100%|████████████████████████| 143/0 [00:00<00:00, 4939.35 examples/s] Generating train split: 100%|████████████████████████| 1029/0 [00:00<00:00, 40692.99 examples/s] Generating validation split: 100%|████████████████████████| 258/0 [00:00<00:00, 22803.78 examples/s] Then, inspect the loaded dataset >>> KB03_data DatasetDict({ test: Dataset({ features: ['Unnamed: 0', 'site', 'depth', 'absolute_sasa', 'hse_up', 'hse_down', 'coord_number', 'rsa', 'h_nho1', 'h_ohn1', 'h_nho2', 'h_ohn2', 'tco', 'kappa', 'alpha', 'phi', 'psi', 'pocket', 'interface', 'basic', 'acidic', 'polar', 'cysteine', 'structural', 'aliphatic', 'aromatic', 'KB03', 'struct_motif_B', 'struct_motif_E', 'struct_motif_G', 'struct_motif_H', 'struct_motif_I', 'struct_motif_P', 'struct_motif_S', 'struct_motif_T'], num_rows: 143 }) train: Dataset({ features: ['Unnamed: 0', 'site', 'depth', 'absolute_sasa', 'hse_up', 'hse_down', 'coord_number', 'rsa', 'h_nho1', 'h_ohn1', 'h_nho2', 'h_ohn2', 'tco', 'kappa', 'alpha', 'phi', 'psi', 'pocket', 'interface', 'basic', 'acidic', 'polar', 'cysteine', 'structural', 'aliphatic', 'aromatic', 'KB03', 'struct_motif_B', 'struct_motif_E', 'struct_motif_G', 'struct_motif_H', 'struct_motif_I', 'struct_motif_P', 'struct_motif_S', 'struct_motif_T'], num_rows: 1029 }) validation: Dataset({ features: ['Unnamed: 0', 'site', 'depth', 'absolute_sasa', 'hse_up', 'hse_down', 'coord_number', 'rsa', 'h_nho1', 'h_ohn1', 'h_nho2', 'h_ohn2', 'tco', 'kappa', 'alpha', 'phi', 'psi', 'pocket', 'interface', 'basic', 'acidic', 'polar', 'cysteine', 'structural', 'aliphatic', 'aromatic', 'KB03', 'struct_motif_B', 'struct_motif_E', 'struct_motif_G', 'struct_motif_H', 'struct_motif_I', 'struct_motif_P', 'struct_motif_S', 'struct_motif_T'], num_rows: 258 }) }) ### Use a Dataset to Train a Model One way to use the dataset is by training a Baseline Random Forest Classifier to predict intereaction of a cysteine with one of the three probes (KB02, KB03, KB05). In this example, we will train and test on KB03 data. First, install scikit-learn >>> pip install scikit-learn then load, split, featurize, fit and evaluate the Random Forest model from sklearn.ensemble import RandomForestClassifier import pandas as pd KB03_data = datasets.load_dataset('ymanasa2000/DrugMap_Ligandability', name='KB03') # split into train and test KB03_train = KB03_data['train'] KB03_test = KB03_data['test'] train_set = pd.DataFrame(KB03_train) test_set = pd.DataFrame(KB03_test) # featurize X_train = train_set.drop(columns=['site', 'KB03']) y_train = train_set['KB03'] X_test = test_set.drop(columns=['site', 'KB03']) y_test = test_set['KB03'] # fit model_1 = RandomForestClassifier() model_1.fit(X_train, y_train) # evaluate print(model_1.score(X_test, y_test)) # output: 0.5944 ## About the Cysteine Structure Database ### Features of the DB This DB features a csv with structural data for ~6,500 bindable cysteines in hundreds of protein active sites. Each cysteine has structural data such as, numerical values for Solvent Accessible Surface Area (SASA), Cysteine Depth, etc. Additionally, this DB contains probe read-outs from an experiment described in Takahashi_et_al_2024. They integrated the isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP) platform with tandem mass tag (TMT)-based mass spectrometry quantification (iso-TMT) to measure cysteine reactivity. In this approach, cell lysates are first treated with cysteine-reactive “scout” compounds or vehicle control, allowing reactive cysteines a chance to form covalent adducts, and then this is followed by a chase with a pan-cysteine-reactive probe (iodoacetamide-desthiobiotin `DBIA`), which reacts with all remaining free cysteine thiolate groups. Crucially, cysteines that reacted with the scout compound will escape being tagged by DBIA. Ligandable cysteines are defined as those that are engaged (ε-value) >60% by cysteine-reactive compounds. ### Data splits The authors of this dataset suggested using a `Stratified Split` via the train_test_split() method which was used to produce the datasets in this Hugging Face DB. ### Citation Please use the following citation in any publication using our Cysteine Structure Dataset: ```md @article{ Takahashi_et_al_2024, author={Takahashi, Chong, Harrison, Bar-Peled, et al}, doi={10.1016/j.cell.2024.03.027}, journal={Cell}, number={10}, month={May} title={DrugMap: A quantitative pan-cancer analysis of Cysteine ligandability}, volume={187}, year={2024} url = {https://www.biorxiv.org/content/10.1101/2023.10.20.563287v1} } ```