File size: 12,183 Bytes
5664e18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import json
import os
import datasets
class COCOBuilderConfig(datasets.BuilderConfig):
def __init__(self, name, splits, **kwargs):
super().__init__(name, **kwargs)
self.splits = splits
# Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{DBLP:journals/corr/LinMBHPRDZ14,
author = {Tsung{-}Yi Lin and
Michael Maire and
Serge J. Belongie and
Lubomir D. Bourdev and
Ross B. Girshick and
James Hays and
Pietro Perona and
Deva Ramanan and
Piotr Doll{'{a} }r and
C. Lawrence Zitnick},
title = {Microsoft {COCO:} Common Objects in Context},
journal = {CoRR},
volume = {abs/1405.0312},
year = {2014},
url = {http://arxiv.org/abs/1405.0312},
archivePrefix = {arXiv},
eprint = {1405.0312},
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
# Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
COCO is a large-scale object detection, segmentation, and captioning dataset.
"""
# Add a link to an official homepage for the dataset here
_HOMEPAGE = "http://cocodataset.org/#home"
# Add the licence for the dataset here if you can find it
_LICENSE = ""
# Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# This script is supposed to work with local (downloaded) COCO dataset.
_URLs = {}
# Name of the dataset usually match the script name with CamelCase instead of snake_case
class COCODataset(datasets.GeneratorBasedBuilder):
"""An example dataset script to work with the local (downloaded) COCO dataset"""
VERSION = datasets.Version("0.0.0")
BUILDER_CONFIG_CLASS = COCOBuilderConfig
BUILDER_CONFIGS = [
COCOBuilderConfig(name="2017", splits=["train", "val"]),
]
DEFAULT_CONFIG_NAME = "2017"
def _info(self):
# This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
feature_dict = {
"id": datasets.Value("int64"),
"objects": {
"bbox_id": datasets.Sequence(datasets.Value("int64")),
"category_id": datasets.Sequence(
datasets.ClassLabel(
names=[
"N/A",
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"street sign",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"hat",
"backpack",
"umbrella",
"shoe",
"eye glasses",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"plate",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"mirror",
"dining table",
"window",
"desk",
"toilet",
"door",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"blender",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush",
]
)
),
"bbox": datasets.Sequence(
datasets.Sequence(datasets.Value("float64"), length=4)
),
"iscrowd": datasets.Sequence(datasets.Value("int64")),
"area": datasets.Sequence(datasets.Value("float64")),
},
"height": datasets.Value("int64"),
"width": datasets.Value("int64"),
"file_name": datasets.Value("string"),
"coco_url": datasets.Value("string"),
"image_path": datasets.Value("string"),
}
features = datasets.Features(feature_dict)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
data_dir = self.config.data_dir
if not data_dir:
raise ValueError(
"This script is supposed to work with local (downloaded) COCO dataset. The argument `data_dir` in `load_dataset()` is required."
)
_DL_URLS = {
"train": os.path.join(data_dir, "train2017.zip"),
"val": os.path.join(data_dir, "val2017.zip"),
"annotations_trainval": os.path.join(
data_dir, "annotations_trainval2017.zip"
),
}
archive_path = dl_manager.download_and_extract(_DL_URLS)
splits = []
for split in self.config.splits:
if split == "train":
dataset = datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"json_path": os.path.join(
archive_path["annotations_trainval"],
"annotations",
"instances_train2017.json",
),
"image_dir": os.path.join(archive_path["train"], "train2017"),
"split": "train",
},
)
elif split in ["val", "valid", "validation", "dev"]:
dataset = datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"json_path": os.path.join(
archive_path["annotations_trainval"],
"annotations",
"instances_val2017.json",
),
"image_dir": os.path.join(archive_path["val"], "val2017"),
"split": "valid",
},
)
else:
continue
splits.append(dataset)
return splits
def _generate_examples(
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
self,
json_path,
image_dir,
split,
):
"""Yields examples as (key, example) tuples."""
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
features = [
"id",
"objects",
"height",
"width",
"file_name",
"coco_url",
"image_path",
]
object_features = [
"bbox_id",
"category_id",
"bbox",
"iscrowd",
"area",
]
with open(json_path, "r", encoding="UTF-8") as fp:
data = json.load(fp)
images = data["images"]
images_entry = {image["id"]: image for image in images}
for image_id, image_entry in images_entry.items():
image_entry["image_path"] = os.path.join(
image_dir, image_entry["file_name"]
)
image_entry["objects"] = []
objects = data["annotations"]
for id_, object_entry in enumerate(objects):
image_id = object_entry["image_id"]
entry = {k: v for k, v in object_entry.items() if k in object_features}
entry["bbox_id"] = object_entry["id"]
if entry["iscrowd"]:
continue
images_entry[image_id]["objects"].append(entry)
for id_, entry in images_entry.items():
entry = {k: v for k, v in entry.items() if k in features}
# collate objects
objects = entry.pop("objects")
if not objects:
continue
entry["objects"] = {
object_feature: [obj[object_feature] for obj in objects]
for object_feature in object_features
}
yield str(entry["id"]), entry
|