Datasets:

Modalities:
Text
Formats:
text
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
License:
yoshitomo-matsubara commited on
Commit
2b660c6
1 Parent(s): 655ca5a

addd preprint info

Browse files
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -50,7 +50,7 @@ task_ids: []
50
 
51
  - **Homepage:**
52
  - **Repository:** https://github.com/omron-sinicx/srsd-benchmark
53
- - **Paper:** Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
54
  - **Point of Contact:** [Yoshitaka Ushiku](mailto:yoshitaka.ushiku@sinicx.com)
55
 
56
  ### Dataset Summary
@@ -58,7 +58,7 @@ task_ids: []
58
  Our SRSD (Feynman) datasets are designed to discuss the performance of Symbolic Regression for Scientific Discovery.
59
  We carefully reviewed the properties of each formula and its variables in [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html) to design reasonably realistic sampling range of values so that our SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method con (re)discover physical laws from such datasets.
60
 
61
- This is the Hard set of our SRSD-Feynman datasets, which consists of the following 50 different physics formulas:
62
 
63
  | ID | Formula |
64
  |-----------|---------------------------------------------------------------------------------------------|
@@ -203,11 +203,12 @@ MIT License
203
 
204
  ### Citation Information
205
 
 
206
  ```bibtex
207
  @article{matsubara2022rethinking,
208
  title={Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery},
209
  author={Matsubara, Yoshitomo and Chiba, Naoya and Igarashi, Ryo and Tatsunori, Taniai and Ushiku, Yoshitaka},
210
- journal={arXiv preprint arXiv:...},
211
  year={2022}
212
  }
213
  ```
 
50
 
51
  - **Homepage:**
52
  - **Repository:** https://github.com/omron-sinicx/srsd-benchmark
53
+ - **Paper:** [Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery](https://arxiv.org/abs/2206.10540)
54
  - **Point of Contact:** [Yoshitaka Ushiku](mailto:yoshitaka.ushiku@sinicx.com)
55
 
56
  ### Dataset Summary
 
58
  Our SRSD (Feynman) datasets are designed to discuss the performance of Symbolic Regression for Scientific Discovery.
59
  We carefully reviewed the properties of each formula and its variables in [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html) to design reasonably realistic sampling range of values so that our SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method con (re)discover physical laws from such datasets.
60
 
61
+ This is the ***Hard set*** of our SRSD-Feynman datasets, which consists of the following 50 different physics formulas:
62
 
63
  | ID | Formula |
64
  |-----------|---------------------------------------------------------------------------------------------|
 
203
 
204
  ### Citation Information
205
 
206
+ [[Preprint](https://arxiv.org/abs/2206.10540)]
207
  ```bibtex
208
  @article{matsubara2022rethinking,
209
  title={Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery},
210
  author={Matsubara, Yoshitomo and Chiba, Naoya and Igarashi, Ryo and Tatsunori, Taniai and Ushiku, Yoshitaka},
211
+ journal={arXiv preprint arXiv:2206.10540},
212
  year={2022}
213
  }
214
  ```