Datasets:

Modalities:
Text
Formats:
text
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
License:
yoshitomo-matsubara commited on
Commit
af81870
1 Parent(s): 3298217

addd preprint info

Browse files
Files changed (1) hide show
  1. README.md +4 -3
README.md CHANGED
@@ -50,7 +50,7 @@ task_ids: []
50
 
51
  - **Homepage:**
52
  - **Repository:** https://github.com/omron-sinicx/srsd-benchmark
53
- - **Paper:** Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
54
  - **Point of Contact:** [Yoshitaka Ushiku](mailto:yoshitaka.ushiku@sinicx.com)
55
 
56
  ### Dataset Summary
@@ -58,7 +58,7 @@ task_ids: []
58
  Our SRSD (Feynman) datasets are designed to discuss the performance of Symbolic Regression for Scientific Discovery.
59
  We carefully reviewed the properties of each formula and its variables in [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html) to design reasonably realistic sampling range of values so that our SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method con (re)discover physical laws from such datasets.
60
 
61
- This is the Medium set of our SRSD-Feynman datasets, which consists of the following 40 different physics formulas:
62
 
63
  | ID | Formula |
64
  |-----------|---------------------------------------------------------------------------------------------|
@@ -193,11 +193,12 @@ MIT License
193
 
194
  ### Citation Information
195
 
 
196
  ```bibtex
197
  @article{matsubara2022rethinking,
198
  title={Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery},
199
  author={Matsubara, Yoshitomo and Chiba, Naoya and Igarashi, Ryo and Tatsunori, Taniai and Ushiku, Yoshitaka},
200
- journal={arXiv preprint arXiv:...},
201
  year={2022}
202
  }
203
  ```
 
50
 
51
  - **Homepage:**
52
  - **Repository:** https://github.com/omron-sinicx/srsd-benchmark
53
+ - **Paper:** [Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery](https://arxiv.org/abs/2206.10540)
54
  - **Point of Contact:** [Yoshitaka Ushiku](mailto:yoshitaka.ushiku@sinicx.com)
55
 
56
  ### Dataset Summary
 
58
  Our SRSD (Feynman) datasets are designed to discuss the performance of Symbolic Regression for Scientific Discovery.
59
  We carefully reviewed the properties of each formula and its variables in [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html) to design reasonably realistic sampling range of values so that our SRSD datasets can be used for evaluating the potential of SRSD such as whether or not an SR method con (re)discover physical laws from such datasets.
60
 
61
+ This is the ***Medium set*** of our SRSD-Feynman datasets, which consists of the following 40 different physics formulas:
62
 
63
  | ID | Formula |
64
  |-----------|---------------------------------------------------------------------------------------------|
 
193
 
194
  ### Citation Information
195
 
196
+ [[Preprint](https://arxiv.org/abs/2206.10540)]
197
  ```bibtex
198
  @article{matsubara2022rethinking,
199
  title={Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery},
200
  author={Matsubara, Yoshitomo and Chiba, Naoya and Igarashi, Ryo and Tatsunori, Taniai and Ushiku, Yoshitaka},
201
+ journal={arXiv preprint arXiv:2206.10540},
202
  year={2022}
203
  }
204
  ```