File size: 11,049 Bytes
7f772ae 310c3fd 7f772ae 685aaee 7f772ae c129621 7f772ae b563d87 7f772ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Aishell dataset.
"""
import os
import datasets
from huggingface_hub import list_repo_files
import gzip
import json
repo_id = "yuekai/aishell"
_DESCRIPTION = """\
aishell
"""
_HOMEPAGE = "https://github.com/SpeechColab/Aishell"
_SUBSETS = ("train", "dev", "test")
_BASE_DATA_URL = f"https://huggingface.co/datasets/{repo_id}/resolve/main/"
_AUDIO_ARCHIVE_URL = _BASE_DATA_URL + "data/aishell_cuts_{subset}.{archive_id:08}.tar.gz"
_META_URL = _BASE_DATA_URL + "data/aishell_cuts_{subset}.{archive_id:08}.jsonl.gz"
FILES = list_repo_files(repo_id, repo_type="dataset")
logger = datasets.utils.logging.get_logger(__name__)
class CustomAudioConfig(datasets.BuilderConfig):
"""BuilderConfig for the dataset."""
def __init__(self, name, *args, **kwargs):
"""BuilderConfig for the dataset.
"""
super().__init__(name=name, *args, **kwargs)
assert name in _SUBSETS, f"Unknown subset {name}"
self.subsets_to_download = (name,)
class Aishell(datasets.GeneratorBasedBuilder):
"""
Aishell is an evolving, multi-domain English speech recognition corpus with 10,000 hours of high quality
labeled audio suitable for supervised training, and 40,000 hours of total audio suitable for semi-supervised
and unsupervised training (this implementation contains only labelled data for now).
Around 40,000 hours of transcribed audio is first collected from audiobooks, podcasts
and YouTube, covering both read and spontaneous speaking styles, and a variety of topics, such as arts, science,
sports, etc. A new forced alignment and segmentation pipeline is proposed to create sentence segments suitable
for speech recognition training, and to filter out segments with low-quality transcription. For system training,
Aishell provides five subsets of different sizes, 10h, 250h, 1000h, 2500h, and 10000h.
For our 10,000-hour XL training subset, we cap the word error rate at 4% during the filtering/validation stage,
and for all our other smaller training subsets, we cap it at 0%. The DEV and TEST evaluation sets, on the other hand,
are re-processed by professional human transcribers to ensure high transcription quality.
"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [CustomAudioConfig(name=subset) for subset in _SUBSETS]
DEFAULT_WRITER_BATCH_SIZE = 128
def _info(self):
features = datasets.Features(
{
"segment_id": datasets.Value("string"),
"speaker": datasets.Value("string"),
"text": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"original_full_path": datasets.Value("string"), # relative path to full audio in original data dirs
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
)
@property
def _splits_to_subsets(self):
return {
"train": ['train'],
"dev": ["dev"],
"test": ["test"]
}
def _split_generators(self, dl_manager):
splits_to_subsets = self._splits_to_subsets
splits = (self.config.name,)
# if self.config.name in {"dev", "test"}:
# splits = (self.config.name,)
# else:
# splits = ("train", "dev", "test")
split_to_n_archives = {
split: int(len([file for file in FILES if f"cuts_{splits_to_subsets[split][0]}" in file]) / 2)
for split in splits
}
# 2. prepare sharded archives with audio files
audio_archives_urls = {
split:
[
_AUDIO_ARCHIVE_URL.format(subset=splits_to_subsets[split][0],
archive_id=i)
for i in range(split_to_n_archives[split])
]
for split in splits
}
audio_archives_paths = dl_manager.download(audio_archives_urls)
local_audio_archives_paths = dl_manager.extract(audio_archives_paths) if not dl_manager.is_streaming \
else None
# 3. prepare sharded metadata csv files
meta_urls = {
split: [
_META_URL.format(subset=splits_to_subsets[split][0], archive_id=i)
for i in range(split_to_n_archives[split])
]
for split in splits
}
# meta_paths = dl_manager.download_and_extract(meta_urls)
meta_paths = dl_manager.download(meta_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"audio_archives_iterators": [
dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths[self.config.name]
],
"local_audio_archives_paths": local_audio_archives_paths[
self.config.name] if local_audio_archives_paths else None,
"meta_paths": meta_paths[self.config.name]
},
),
]
# if self.config.name not in {"dev", "test"}:
# result = [
# datasets.SplitGenerator(
# name=datasets.Split.TRAIN,
# gen_kwargs={
# "audio_archives_iterators": [
# dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["train"]
# ],
# "local_audio_archives_paths": local_audio_archives_paths[
# "train"] if local_audio_archives_paths else None,
# "meta_paths": meta_paths["train"]
# },
# )
# ]
# if 'dev' in audio_archives_paths:
# result.append(datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "audio_archives_iterators": [
# dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["dev"]
# ],
# "local_audio_archives_paths": local_audio_archives_paths[
# "dev"] if local_audio_archives_paths else None,
# "meta_paths": meta_paths["dev"]
# },
# ))
# if 'test' in audio_archives_paths:
# result.append(datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "audio_archives_iterators": [
# dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["test"]
# ],
# "local_audio_archives_paths": local_audio_archives_paths[
# "test"] if local_audio_archives_paths else None,
# "meta_paths": meta_paths["test"]
# },
# ))
# return result
# if self.config.name == "dev":
# return [
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# gen_kwargs={
# "audio_archives_iterators": [
# dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["dev"]
# ],
# "local_audio_archives_paths": local_audio_archives_paths[
# "dev"] if local_audio_archives_paths else None,
# "meta_paths": meta_paths["dev"]
# },
# ),
# ]
# if self.config.name == "test":
# return [
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# gen_kwargs={
# "audio_archives_iterators": [
# dl_manager.iter_archive(archive_path) for archive_path in audio_archives_paths["test"]
# ],
# "local_audio_archives_paths": local_audio_archives_paths[
# "test"] if local_audio_archives_paths else None,
# "meta_paths": meta_paths["test"]
# },
# ),
# ]
def _generate_examples(self, audio_archives_iterators, local_audio_archives_paths, meta_paths):
def load_meta(file_path):
data = {}
with gzip.open(file_path, 'rt', encoding='utf-8') as f:
for line in f:
item = json.loads(line)
data[item["id"]] = item
return data
assert len(audio_archives_iterators) == len(meta_paths)
if local_audio_archives_paths:
assert len(audio_archives_iterators) == len(local_audio_archives_paths)
for i, (meta_path, audio_archive_iterator) in enumerate(zip(meta_paths, audio_archives_iterators)):
meta_dict = load_meta(meta_path)
for audio_path_in_archive, audio_file in audio_archive_iterator:
# `audio_path_in_archive` is like "data/aishell_cuts_test.00000000/BAC/BAC009S0764W0393-359.wav"
audio_filename = os.path.split(audio_path_in_archive)[-1]
audio_id = audio_filename.split(".wav")[0]
audio_meta = meta_dict[audio_id]
audio_meta["segment_id"] = audio_id
audio_meta["original_full_path"] = audio_meta["recording"]["sources"][0]["source"]
audio_meta["text"] = audio_meta['supervisions'][0]['text']
audio_meta["speaker"] = audio_meta['supervisions'][0]['speaker']
path = os.path.join(local_audio_archives_paths[i], audio_path_in_archive) if local_audio_archives_paths \
else audio_path_in_archive
yield audio_id, {
"audio": {"path": path , "bytes": audio_file.read()},
**{feature: value for feature, value in audio_meta.items() if feature in self.info.features}
}
|