File size: 11,780 Bytes
594180e
87141c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
594180e
 
 
 
 
 
 
 
87141c1
 
 
 
 
 
 
 
 
 
594180e
 
87141c1
 
 
594180e
 
87141c1
594180e
87141c1
594180e
87141c1
 
594180e
 
 
 
87141c1
 
594180e
87141c1
594180e
87141c1
594180e
 
87141c1
594180e
 
 
 
 
87141c1
 
594180e
87141c1
594180e
 
 
 
 
 
 
 
 
87141c1
594180e
 
 
87141c1
594180e
 
 
 
 
 
87141c1
594180e
 
 
 
 
 
87141c1
594180e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87141c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CPPE-5 dataset."""


import collections
import json
import os

import datasets


_CITATION = """\
@misc{dagli2021cppe5,
      title={CPPE-5: Medical Personal Protective Equipment Dataset},
      author={Rishit Dagli and Ali Mustufa Shaikh},
      year={2021},
      eprint={2112.09569},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
"""

_DESCRIPTION = """\
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal
to allow the study of subordinate categorization of medical personal protective equipments,
which is not possible with other popular data sets that focus on broad level categories.
"""

_HOMEPAGE = "https://sites.google.com/view/cppe5"

_LICENSE = "Unknown"

# _URL = "https://drive.google.com/uc?id=1MGnaAfbckUmigGUvihz7uiHGC6rBIbvr"
_URL = "https://huggingface.co/datasets/yunusskeete/cppe5/resolve/main/cppe5.tar.gz"

_CATEGORIES = ["automobile", "bike", "motorbike", "traffic_light", "traffic_sign"]


class CPPE5(datasets.GeneratorBasedBuilder):
    """CPPE - 5 dataset."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        features = datasets.Features(
            {
                "image_id": datasets.Value("int64"),
                "image": datasets.Image(),
                "width": datasets.Value("int32"),
                "height": datasets.Value("int32"),
                "objects": datasets.Sequence(
                    {
                        "id": datasets.Value("int64"),
                        "area": datasets.Value("int64"),
                        "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                        "category": datasets.ClassLabel(names=_CATEGORIES),
                    }
                ),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive = dl_manager.download(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "annotation_file_path": "annotations/train.json",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "annotation_file_path": "annotations/test.json",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
        ]

    def _generate_examples(self, annotation_file_path, files):
        def process_annot(annot, category_id_to_category):
            return {
                "id": annot["id"],
                "area": annot["area"],
                "bbox": annot["bbox"],
                "category": category_id_to_category[annot["category_id"]],
            }

        image_id_to_image = {}
        idx = 0
        # This loop relies on the ordering of the files in the archive:
        # Annotation files come first, then the images.
        for path, f in files:
            file_name = os.path.basename(path)
            if path == annotation_file_path:
                annotations = json.load(f)
                category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
                image_id_to_annotations = collections.defaultdict(list)
                for annot in annotations["annotations"]:
                    image_id_to_annotations[annot["image_id"]].append(annot)
                image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
            elif file_name in image_id_to_image:
                image = image_id_to_image[file_name]
                objects = [
                    process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
                ]
                yield idx, {
                    "image_id": image["id"],
                    "image": {"path": path, "bytes": f.read()},
                    "width": image["width"],
                    "height": image["height"],
                    "objects": objects,
                }
                idx += 1

# # coding=utf-8
# # Permission is hereby granted, free of charge, to any person obtaining
# # a copy of this software and associated documentation files (the
# # "Software"), to deal in the Software without restriction, including
# # without limitation the rights to use, copy, modify, merge, publish,
# # distribute, sublicense, and/or sell copies of the Software, and to
# # permit persons to whom the Software is furnished to do so, subject to
# # the following conditions:

# # The above copyright notice and this permission notice shall be
# # included in all copies or substantial portions of the Software.

# # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# """Carla-COCO-Object-Detection-Dataset"""

# import collections
# import json
# import os

# import datasets


# logger = datasets.logging.get_logger(__name__)

# _DESCRIPTION = """\
# This dataset contains 1028 images each 640x380 pixels.
# The dataset is split into 249 test and 779 training examples.
# Every image comes with MS COCO format annotations.
# The dataset was collected in Carla Simulator, driving around in autopilot mode in various environments
# (Town01, Town02, Town03, Town04, Town05) and saving every i-th frame.
# The labels where then automatically generated using the semantic segmentation information.
# """

# _HOMEPAGE = "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset"

# _LICENSE = "MIT"

# # _URL = "https://drive.google.com/uc?id=1QeveFt1jDNrafJeeCV1N_KoIKQEZyhuf"
# # # _URL = "https://drive.google.com/uc?id=1xUPwrMBBrGFIapLx_fyLjmH4HN16A4iZ"
# _URL = "https://huggingface.co/datasets/yunusskeete/Carla-COCO-Object-Detection-Dataset/resolve/main/Carla-COCO-Object-Detection-Dataset.tar.gz"

# _CATEGORIES = ["automobile", "bike", "motorbike", "traffic_light", "traffic_sign"]

# class CARLA_COCO(datasets.GeneratorBasedBuilder):
#     """Carla-COCO-Object-Detection-Dataset"""

#     VERSION = datasets.Version("1.1.0")

#     def _info(self):
#         """This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset"""

#         features = datasets.Features(
#             {
#                 "id": datasets.Value("int64"),
#                 "image_id": datasets.Value("string"),
#                 "image": datasets.Image(),
#                 "width": datasets.Value("int32"),
#                 "height": datasets.Value("int32"),
#                 "file_name": datasets.Value("string"),
#                 "url": datasets.Value("string"),
#                 "objects": datasets.Sequence(
#                     {
#                         "id": datasets.Sequence(datasets.Value("int64")),
#                         "area": datasets.Sequence(datasets.Value("int64")),
#                         "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
#                         "category": datasets.Sequence(datasets.ClassLabel(names=_CATEGORIES)),
#                     }
#                 ),
#             }
#         )
#         return datasets.DatasetInfo(
#             description=_DESCRIPTION,
#             features=features,
#             homepage=_HOMEPAGE,
#             license=_LICENSE,
#         )

#     def _split_generators(self, dl_manager):
#         """This method is tasked with downloading/extracting the data and defining the splits depending on the configuration"""

#         archive = dl_manager.download_and_extract(_URL)

#         return [
#             datasets.SplitGenerator(
#                 name=datasets.Split.TRAIN,
#                 # These kwargs will be passed to _generate_examples
#                 gen_kwargs={
#                     "annotation_file_path": "annotations/train.json",
#                     "files": dl_manager.iter_archive(archive),
#                 }
#             ),
#             datasets.SplitGenerator(
#                 name=datasets.Split.TEST,
#                 # These kwargs will be passed to _generate_examples
#                 gen_kwargs={
#                     "annotation_file_path": "annotations/test.json",
#                     "files": dl_manager.iter_archive(archive),
#                 }
#             ),
#         ]

#     # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
#     def _generate_examples(self, annotation_file_path, files):
#         """
#         This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
#         The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
#         """

#         logger.info("generating examples from = %s", annotation_file_path)

#         def process_annot(annot, category_id_to_category):
#             return {
#                 "id": annot["id"],
#                 "area": annot["area"],
#                 "bbox": annot["bbox"],
#                 "category": category_id_to_category[annot["category_id"]],
#             }

#         image_id_to_image = {}
#         idx = 0
#         # This loop relies on the ordering of the files in the archive:
#         # Annotation files come first, then the images.
#         for path, f in files:
#             file_name = os.path.basename(path)
#             if path == annotation_file_path:
#                 annotations = json.load(f)
#                 category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
#                 image_id_to_annotations = collections.defaultdict(list)
#                 for annot in annotations["annotations"]:
#                     image_id_to_annotations[annot["image_id"]].append(annot)
#                 image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
#             elif file_name in image_id_to_image:
#                 image = image_id_to_image[file_name]
#                 objects = [
#                     process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
#                 ]
#                 yield idx, {
#                     "image_id": image["id"],
#                     "image": {"path": path, "bytes": f.read()},
#                     "width": image["width"],
#                     "height": image["height"],
#                     "objects": objects,
#                 }
#                 idx += 1