PHilita commited on
Commit
c7aa4d8
1 Parent(s): e135a23

Removed dataset_info.json

Browse files
Files changed (2) hide show
  1. README.md +5 -7
  2. dataset_infos.json +0 -113
README.md CHANGED
@@ -6,14 +6,12 @@ size_categories:
6
  - n<1K
7
  ---
8
 
9
- # Carla-COCO-Object-Detection-Dataset
10
 
11
- **COCO-Style Labelled Dataset for Object Detection in Carla Simulator**
12
 
13
- This dataset contains images and publically accessible URLs for 1028 images, each 640x380 pixels.
14
  The dataset is split into 249 test and 779 training examples.
15
- Every image comes with an associated label .xml file in the pascal VOC format ([`./labels/`](https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/tree/master/labels) folder).
16
- A MS COCO format of the dataset is available in the [`./train.json`](https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/blob/master/train.json) and [`./test.json`](https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/blob/master/test.json) files.
17
  The dataset was collected in Carla Simulator, driving around in autopilot mode in various environments (Town01, Town02, Town03, Town04, Town05) and saving every i-th frame.
18
  The labels where then automatically generated using the semantic segmentation information.
19
 
@@ -35,7 +33,7 @@ The labels where then automatically generated using the semantic segmentation in
35
 
36
  ## Dataset Structure
37
  ### Data Instances
38
- A data point comprises an image file name, its publically accessible URL, and its object annotations.
39
  ```json
40
  {
41
  "image_id": 14,
@@ -50,7 +48,7 @@ A data point comprises an image file name, its publically accessible URL, and it
50
  [201, 205, 238, 175],
51
  [363, 159, 6, 25]
52
  ],
53
- "category": [0, 3]
54
  }
55
  }
56
  ```
 
6
  - n<1K
7
  ---
8
 
9
+ # Carla-COCO-Object-Detection-Dataset-No-Images
10
 
11
+ **Hugging Face COCO-Style Labelled Dataset for Object Detection in Carla Simulator**
12
 
13
+ This dataset contains 1028 images, each 640x380 pixels, with corresponding publically accessible URLs.
14
  The dataset is split into 249 test and 779 training examples.
 
 
15
  The dataset was collected in Carla Simulator, driving around in autopilot mode in various environments (Town01, Town02, Town03, Town04, Town05) and saving every i-th frame.
16
  The labels where then automatically generated using the semantic segmentation information.
17
 
 
33
 
34
  ## Dataset Structure
35
  ### Data Instances
36
+ A data point comprises an image, its file name, its publically accessible URL, and its object annotations.
37
  ```json
38
  {
39
  "image_id": 14,
 
48
  [201, 205, 238, 175],
49
  [363, 159, 6, 25]
50
  ],
51
+ "category": [1, 4]
52
  }
53
  }
54
  ```
dataset_infos.json DELETED
@@ -1,113 +0,0 @@
1
- {
2
- "description": "This dataset contains 1028 images each 640x380 pixels.\nThe dataset is split into 249 test and 779 training examples.\nEvery image comes with MS COCO format annotations.\nThe dataset was collected in Carla Simulator, driving around in autopilot mode in various environments\n(Town01, Town02, Town03, Town04, Town05) and saving every i-th frame.\nThe labels where then automatically generated using the semantic segmentation information.\n",
3
- "citation": "",
4
- "homepage": "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset",
5
- "license": "MIT",
6
- "features": {
7
- "image_id": {
8
- "dtype": "int64",
9
- "id": null,
10
- "_type": "Value"
11
- },
12
- "width": {
13
- "dtype": "int32",
14
- "id": null,
15
- "_type": "Value"
16
- },
17
- "height": {
18
- "dtype": "int32",
19
- "id": null,
20
- "_type": "Value"
21
- },
22
- "file_name": {
23
- "dtype": "string",
24
- "id": null,
25
- "_type": "Value"
26
- },
27
- "url": {
28
- "dtype": "string",
29
- "id": null,
30
- "_type": "Value"
31
- },
32
- "objects": {
33
- "feature": {
34
- "id": {
35
- "dtype": "int64",
36
- "id": null,
37
- "_type": "Value"
38
- },
39
- "area": {
40
- "dtype": "int64",
41
- "id": null,
42
- "_type": "Value"
43
- },
44
- "bbox": {
45
- "feature": {
46
- "dtype": "float32",
47
- "id": null,
48
- "_type": "Value"
49
- },
50
- "length": 4,
51
- "id": null,
52
- "_type": "Sequence"
53
- },
54
- "category": {
55
- "num_classes": 5,
56
- "names": [
57
- "automobile",
58
- "bike",
59
- "motorbike",
60
- "traffic_light",
61
- "traffic_sign"
62
- ],
63
- "names_file": null,
64
- "id": null,
65
- "_type": "ClassLabel"
66
- }
67
- }
68
- }
69
- },
70
- "post_processed": null,
71
- "supervised_keys": null,
72
- "task_templates": null,
73
- "builder_name": "carla-coco-object-detection-dataset",
74
- "dataset_name": "carla-coco-object-detection-dataset",
75
- "config_name": "default",
76
- "version": {
77
- "version_str": "1.1.0",
78
- "description": null,
79
- "major": 1,
80
- "minor": 1,
81
- "patch": 0
82
- },
83
- "splits": {
84
- "train": {
85
- "name": "train",
86
- "num_bytes": 231554,
87
- "num_examples": 779,
88
- "shard_lengths": null,
89
- "dataset_name": "carla-coco-object-detection-dataset"
90
- },
91
- "test": {
92
- "name": "test",
93
- "num_bytes": 114645,
94
- "num_examples": 249,
95
- "shard_lengths": null,
96
- "dataset_name": "carla-coco-object-detection-dataset"
97
- }
98
- },
99
- "download_checksums": {
100
- "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/raw/master/train.tar.gz": {
101
- "num_bytes": 27893,
102
- "checksum": null
103
- },
104
- "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/raw/master/test.tar.gz": {
105
- "num_bytes": 14913,
106
- "checksum": null
107
- }
108
- },
109
- "download_size": 42806,
110
- "post_processing_size": null,
111
- "dataset_size": 346199,
112
- "size_in_bytes": 389005
113
- }