Removed dataset_info.json
Browse files- README.md +5 -7
- dataset_infos.json +0 -113
README.md
CHANGED
@@ -6,14 +6,12 @@ size_categories:
|
|
6 |
- n<1K
|
7 |
---
|
8 |
|
9 |
-
# Carla-COCO-Object-Detection-Dataset
|
10 |
|
11 |
-
**COCO-Style Labelled Dataset for Object Detection in Carla Simulator**
|
12 |
|
13 |
-
This dataset contains
|
14 |
The dataset is split into 249 test and 779 training examples.
|
15 |
-
Every image comes with an associated label .xml file in the pascal VOC format ([`./labels/`](https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/tree/master/labels) folder).
|
16 |
-
A MS COCO format of the dataset is available in the [`./train.json`](https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/blob/master/train.json) and [`./test.json`](https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/blob/master/test.json) files.
|
17 |
The dataset was collected in Carla Simulator, driving around in autopilot mode in various environments (Town01, Town02, Town03, Town04, Town05) and saving every i-th frame.
|
18 |
The labels where then automatically generated using the semantic segmentation information.
|
19 |
|
@@ -35,7 +33,7 @@ The labels where then automatically generated using the semantic segmentation in
|
|
35 |
|
36 |
## Dataset Structure
|
37 |
### Data Instances
|
38 |
-
A data point comprises an image file name, its publically accessible URL, and its object annotations.
|
39 |
```json
|
40 |
{
|
41 |
"image_id": 14,
|
@@ -50,7 +48,7 @@ A data point comprises an image file name, its publically accessible URL, and it
|
|
50 |
[201, 205, 238, 175],
|
51 |
[363, 159, 6, 25]
|
52 |
],
|
53 |
-
"category": [
|
54 |
}
|
55 |
}
|
56 |
```
|
|
|
6 |
- n<1K
|
7 |
---
|
8 |
|
9 |
+
# Carla-COCO-Object-Detection-Dataset-No-Images
|
10 |
|
11 |
+
**Hugging Face COCO-Style Labelled Dataset for Object Detection in Carla Simulator**
|
12 |
|
13 |
+
This dataset contains 1028 images, each 640x380 pixels, with corresponding publically accessible URLs.
|
14 |
The dataset is split into 249 test and 779 training examples.
|
|
|
|
|
15 |
The dataset was collected in Carla Simulator, driving around in autopilot mode in various environments (Town01, Town02, Town03, Town04, Town05) and saving every i-th frame.
|
16 |
The labels where then automatically generated using the semantic segmentation information.
|
17 |
|
|
|
33 |
|
34 |
## Dataset Structure
|
35 |
### Data Instances
|
36 |
+
A data point comprises an image, its file name, its publically accessible URL, and its object annotations.
|
37 |
```json
|
38 |
{
|
39 |
"image_id": 14,
|
|
|
48 |
[201, 205, 238, 175],
|
49 |
[363, 159, 6, 25]
|
50 |
],
|
51 |
+
"category": [1, 4]
|
52 |
}
|
53 |
}
|
54 |
```
|
dataset_infos.json
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"description": "This dataset contains 1028 images each 640x380 pixels.\nThe dataset is split into 249 test and 779 training examples.\nEvery image comes with MS COCO format annotations.\nThe dataset was collected in Carla Simulator, driving around in autopilot mode in various environments\n(Town01, Town02, Town03, Town04, Town05) and saving every i-th frame.\nThe labels where then automatically generated using the semantic segmentation information.\n",
|
3 |
-
"citation": "",
|
4 |
-
"homepage": "https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset",
|
5 |
-
"license": "MIT",
|
6 |
-
"features": {
|
7 |
-
"image_id": {
|
8 |
-
"dtype": "int64",
|
9 |
-
"id": null,
|
10 |
-
"_type": "Value"
|
11 |
-
},
|
12 |
-
"width": {
|
13 |
-
"dtype": "int32",
|
14 |
-
"id": null,
|
15 |
-
"_type": "Value"
|
16 |
-
},
|
17 |
-
"height": {
|
18 |
-
"dtype": "int32",
|
19 |
-
"id": null,
|
20 |
-
"_type": "Value"
|
21 |
-
},
|
22 |
-
"file_name": {
|
23 |
-
"dtype": "string",
|
24 |
-
"id": null,
|
25 |
-
"_type": "Value"
|
26 |
-
},
|
27 |
-
"url": {
|
28 |
-
"dtype": "string",
|
29 |
-
"id": null,
|
30 |
-
"_type": "Value"
|
31 |
-
},
|
32 |
-
"objects": {
|
33 |
-
"feature": {
|
34 |
-
"id": {
|
35 |
-
"dtype": "int64",
|
36 |
-
"id": null,
|
37 |
-
"_type": "Value"
|
38 |
-
},
|
39 |
-
"area": {
|
40 |
-
"dtype": "int64",
|
41 |
-
"id": null,
|
42 |
-
"_type": "Value"
|
43 |
-
},
|
44 |
-
"bbox": {
|
45 |
-
"feature": {
|
46 |
-
"dtype": "float32",
|
47 |
-
"id": null,
|
48 |
-
"_type": "Value"
|
49 |
-
},
|
50 |
-
"length": 4,
|
51 |
-
"id": null,
|
52 |
-
"_type": "Sequence"
|
53 |
-
},
|
54 |
-
"category": {
|
55 |
-
"num_classes": 5,
|
56 |
-
"names": [
|
57 |
-
"automobile",
|
58 |
-
"bike",
|
59 |
-
"motorbike",
|
60 |
-
"traffic_light",
|
61 |
-
"traffic_sign"
|
62 |
-
],
|
63 |
-
"names_file": null,
|
64 |
-
"id": null,
|
65 |
-
"_type": "ClassLabel"
|
66 |
-
}
|
67 |
-
}
|
68 |
-
}
|
69 |
-
},
|
70 |
-
"post_processed": null,
|
71 |
-
"supervised_keys": null,
|
72 |
-
"task_templates": null,
|
73 |
-
"builder_name": "carla-coco-object-detection-dataset",
|
74 |
-
"dataset_name": "carla-coco-object-detection-dataset",
|
75 |
-
"config_name": "default",
|
76 |
-
"version": {
|
77 |
-
"version_str": "1.1.0",
|
78 |
-
"description": null,
|
79 |
-
"major": 1,
|
80 |
-
"minor": 1,
|
81 |
-
"patch": 0
|
82 |
-
},
|
83 |
-
"splits": {
|
84 |
-
"train": {
|
85 |
-
"name": "train",
|
86 |
-
"num_bytes": 231554,
|
87 |
-
"num_examples": 779,
|
88 |
-
"shard_lengths": null,
|
89 |
-
"dataset_name": "carla-coco-object-detection-dataset"
|
90 |
-
},
|
91 |
-
"test": {
|
92 |
-
"name": "test",
|
93 |
-
"num_bytes": 114645,
|
94 |
-
"num_examples": 249,
|
95 |
-
"shard_lengths": null,
|
96 |
-
"dataset_name": "carla-coco-object-detection-dataset"
|
97 |
-
}
|
98 |
-
},
|
99 |
-
"download_checksums": {
|
100 |
-
"https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/raw/master/train.tar.gz": {
|
101 |
-
"num_bytes": 27893,
|
102 |
-
"checksum": null
|
103 |
-
},
|
104 |
-
"https://github.com/yunusskeete/Carla-COCO-Object-Detection-Dataset/raw/master/test.tar.gz": {
|
105 |
-
"num_bytes": 14913,
|
106 |
-
"checksum": null
|
107 |
-
}
|
108 |
-
},
|
109 |
-
"download_size": 42806,
|
110 |
-
"post_processing_size": null,
|
111 |
-
"dataset_size": 346199,
|
112 |
-
"size_in_bytes": 389005
|
113 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|