File size: 16,618 Bytes
475a432 f47f85b 475a432 ef8173d 475a432 ef8173d 475a432 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Librispeech automatic speech recognition dataset."""
import csv
import os
import datasets
# from datasets.tasks import AutomaticSpeechRecognition
from huggingface_hub import list_repo_files
import pyarrow.parquet as pq
import pyarrow as pa
_CITATION = """\
@inproceedings{panayotov2015librispeech,
title={Librispeech: an ASR corpus based on public domain audio books},
author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
pages={5206--5210},
year={2015},
organization={IEEE}
}
"""
_DESCRIPTION = """\
LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
audiobooks from the LibriVox project, and has been carefully segmented and aligned.87
"""
_URL = "http://www.openslr.org/12"
_TRANSCRIPT_URL = "https://huggingface.co/datasets/distil-whisper/whisper_transcriptions_greedy_timestamped/resolve/main/librispeech_asr/"
_DATA_REPO_ID = "sanchit-gandhi/librispeech-data"
_TRANSCRIPT_URLS = {
"clean": {
"dev": _TRANSCRIPT_URL + "validation-clean-transcription.csv",
"test": _TRANSCRIPT_URL + "test-clean-transcription.csv",
"train.100": _TRANSCRIPT_URL + "train-clean-100-transcription.csv",
"train.360": _TRANSCRIPT_URL + "train-clean-360-transcription.csv",
},
"other": {
"test": _TRANSCRIPT_URL + "test-other-transcription.csv",
"dev": _TRANSCRIPT_URL + "validation-other-transcription.csv",
"train.500": _TRANSCRIPT_URL + "train-other-500-transcription.csv",
},
"all": {
"dev.clean": _TRANSCRIPT_URL + "validation-clean-transcription.csv",
"dev.other": _TRANSCRIPT_URL + "validation-other-transcription.csv",
"test.clean": _TRANSCRIPT_URL + "test-clean-transcription.csv",
"test.other": _TRANSCRIPT_URL + "test-other-transcription.csv",
"train.clean.100": _TRANSCRIPT_URL + "train-clean-100-transcription.csv",
"train.clean.360": _TRANSCRIPT_URL + "train-clean-360-transcription.csv",
"train.other.500": _TRANSCRIPT_URL + "train-other-500-transcription.csv",
},
}
class LibrispeechASRConfig(datasets.BuilderConfig):
"""BuilderConfig for LibriSpeechASR."""
def __init__(self, **kwargs):
"""
Args:
data_dir: `string`, the path to the folder containing the files in the
downloaded .tar
citation: `string`, citation for the data set
url: `string`, url for information about the data set
**kwargs: keyword arguments forwarded to super.
"""
super(LibrispeechASRConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
class LibriSpeechASR(datasets.ArrowBasedBuilder):
"""Librispeech dataset."""
DEFAULT_WRITER_BATCH_SIZE = 256
DEFAULT_CONFIG_NAME = "all"
BUILDER_CONFIGS = [
LibrispeechASRConfig(name="clean", description="'Clean' speech."),
LibrispeechASRConfig(name="other", description="'Other', more challenging, speech."),
LibrispeechASRConfig(name="all", description="Combined clean and other dataset."),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
"text": datasets.Value("string"),
"speaker_id": datasets.Value("int64"),
"chapter_id": datasets.Value("int64"),
"id": datasets.Value("string"),
"whisper_transcript": datasets.Value("string"),
}
),
supervised_keys=("file", "text"),
homepage=_URL,
citation=_CITATION,
# task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
)
def _split_generators(self, dl_manager):
data_repo_download = f"https://huggingface.co/datasets/{_DATA_REPO_ID}/resolve/main/"
all_files = list_repo_files(_DATA_REPO_ID, repo_type="dataset")
train_clean_100_files = [file for file in all_files if file.startswith("data/train.clean.100")]
train_clean_360_files = [file for file in all_files if file.startswith("data/train.clean.360")]
train_other_500_files = [file for file in all_files if file.startswith("data/train.other.500")]
validation_clean_files = [file for file in all_files if file.startswith("data/validation.clean")]
validation_other_files = [file for file in all_files if file.startswith("data/validation.other")]
test_clean_files = [file for file in all_files if file.startswith("data/test.clean")]
test_other_files = [file for file in all_files if file.startswith("data/test.other")]
split_to_ids = {
"train.clean.100": train_clean_100_files,
"train.clean.360": train_clean_360_files,
"train.other.500": train_other_500_files,
"dev.clean": validation_clean_files,
"dev.other": validation_other_files,
"test.clean": test_clean_files,
"test.other": test_other_files,
}
dl_urls = {}
for split, split_ids in split_to_ids.items():
dl_urls[split] = [data_repo_download + source_id for source_id in split_ids]
archive_paths = dl_manager.download(dl_urls)
local_extracted_archive_paths = (
dl_manager.extract(archive_paths)
if not dl_manager.is_streaming
else {split: [None] * len(archive_paths[split]) for split in split_to_ids}
)
transcript_archive_path = dl_manager.download(_TRANSCRIPT_URLS[self.config.name])
# (Optional) In non-streaming mode, we can extract the archive locally to have actual local transcription files:
# local_extracted_transcript_archive = dl_manager.extract(transcript_archive_path) if not dl_manager.is_streaming else {}
if self.config.name == "clean":
train_splits = [
datasets.SplitGenerator(
name="train.100",
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("train.clean.100"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["train.clean.100"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("train.100"),
"transcript_files": transcript_archive_path["train.100"],
},
),
datasets.SplitGenerator(
name="train.360",
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("train.360"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["train.clean.360"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("train.360"),
"transcript_files": transcript_archive_path["train.360"],
},
),
]
dev_splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("dev"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["dev.clean"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("dev"),
"transcript_files": transcript_archive_path["dev"],
},
)
]
test_splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("test"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["test.clean"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("test"),
"transcript_files": transcript_archive_path["test"],
},
)
]
elif self.config.name == "other":
train_splits = [
datasets.SplitGenerator(
name="train.500",
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("train.500"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["train.500"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("train.500"),
"transcript_files": transcript_archive_path["train.500"],
},
)
]
dev_splits = [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("dev"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["dev"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("dev"),
"transcript_files": transcript_archive_path["dev"],
},
)
]
test_splits = [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("test"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["test"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("test"),
"transcript_files": transcript_archive_path["test"],
},
)
]
elif self.config.name == "all":
train_splits = [
datasets.SplitGenerator(
name="train.clean.100",
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("train.clean.100"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["train.clean.100"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("train.clean.100"),
"transcript_files": transcript_archive_path["train.clean.100"],
},
),
datasets.SplitGenerator(
name="train.clean.360",
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("train.clean.360"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["train.clean.360"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("train.clean.360"),
"transcript_files": transcript_archive_path["train.clean.360"],
},
),
datasets.SplitGenerator(
name="train.other.500",
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("train.other.500"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["train.other.500"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("train.other.500"),
"transcript_files": transcript_archive_path["train.other.500"],
},
),
]
dev_splits = [
datasets.SplitGenerator(
name="validation.clean",
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("dev.clean"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["dev.clean"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("dev.clean"),
"transcript_files": transcript_archive_path["dev.clean"],
},
),
datasets.SplitGenerator(
name="validation.other",
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("dev.other"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["dev.other"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("dev.other"),
"transcript_files": transcript_archive_path["dev.other"],
},
),
]
test_splits = [
datasets.SplitGenerator(
name="test.clean",
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("test.clean"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["test.clean"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("test.clean"),
"transcript_files": transcript_archive_path["test.clean"],
},
),
datasets.SplitGenerator(
name="test.other",
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get("test.other"),
"archives": [dl_manager.iter_files(path) for path in archive_paths["test.other"]],
#"local_extracted_transcript_archive": local_extracted_transcript_archive.get("test.other"),
"transcript_files": transcript_archive_path["test.other"],
},
),
]
return train_splits + dev_splits + test_splits
def _generate_tables(self, local_extracted_archive_paths, archives, transcript_files):
whisper_transcriptions = dict()
with open(transcript_files, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter=",")
for line in reader:
whisper_transcriptions[line["file_id"]] = line["whisper_transcript"]
idx = 0
for local_extracted_archive_path, archive in zip(local_extracted_archive_paths, archives):
# Here we iterate over all the files within the TAR archive:
for audio_file in archive:
with open(audio_file, "rb") as f:
pf = pq.ParquetFile(f)
for record_batch in pf.iter_batches():
pa_table = pa.Table.from_batches([record_batch])
whisper_transcript = [whisper_transcriptions.get(str(file_id), None) for file_id in pa_table["id"]]
whisper_transcript = pa.array(whisper_transcript, pa.string())
pa_table = pa_table.append_column("whisper_transcript", whisper_transcript)
yield idx, pa_table
idx += 1 |