zd11024 commited on
Commit
637c86c
1 Parent(s): dfbd505

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -3
README.md CHANGED
@@ -1,3 +1,108 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Data Preparation
2
+
3
+ ## Preprocessing
4
+ The directory should be orgainized as
5
+ ```
6
+ Video-3D-LLM # project root
7
+ ├── data
8
+ │ ├── scannet
9
+ │ │ ├── scans
10
+ │ │ ├── posed_images
11
+ │ │ ├── pcd_with_object_aabbs
12
+ │ │ └── mask
13
+ │ ├── embodiedscan
14
+ │ │ ├── embodiedscan_infos_train.pkl
15
+ │ │ ├── embodiedscan_infos_val.pkl
16
+ │ │ └── embodiedscan_infos_test.pkl
17
+ │ ├── metadata
18
+ │ │ ├── scannet_select_frames.json
19
+ │ │ ├── pcd_discrete_0.1.pkl
20
+ │ │ ├── scannet_train_gt_box.json
21
+ │ │ └── scannet_val_pred_box.json
22
+ │ ├── prcoessed
23
+ │ │ ├── multi3drefer_train_llava_style.json
24
+ │ │ ├── multi3drefer_val_llava_style.json
25
+ │ │ ├── ...
26
+ ```
27
+ ### ScanNet v2
28
+ 1. Download the ScanNet v2 dataset [here](http://www.scan-net.org/). The folder of ScanNet should look like
29
+ ```
30
+ Video-3D-LLM # project root
31
+ ├── data
32
+ │ ├── scannet
33
+ │ │ ├── scans
34
+ │ │ │ ├── [scene_id]
35
+ │ │ │ │ ├── [scene_id]_vh_clean_2.ply
36
+ │ │ │ │ ├── [scene_id]_vh_clean_2.0.010000.segs.json
37
+ │ │ │ │ ├── [scene_id].aggregation.json
38
+ │ │ │ │ ├── [scene_id].txt
39
+ │ │ │ │ └── [scene_id].sens
40
+ ```
41
+
42
+ 2. Extract color images, depth images and camera parameter using the following script, which is modified from [EmbodiedScan](https://github.com/OpenRobotLab/EmbodiedScan/blob/main/embodiedscan/converter/generate_image_scannet.py).
43
+ ```bash
44
+ python scripts/3d/preprocessing/generate_image_scannet.py --fast
45
+ ```
46
+
47
+ 3. Extract point clouds for each scene.
48
+ ```bash
49
+ python scripts/3d/preprocessing/extract_scannet_pcd.py
50
+ ```
51
+ This will generate the point clouds and object bounding boxes for each scan.
52
+
53
+
54
+ ### EmbodiedScan
55
+ Download EmbodiedScan data at this [link](https://github.com/OpenRobotLab/EmbodiedScan/tree/main/data). You need to fill out the [official form](https://docs.google.com/forms/d/e/1FAIpQLScUXEDTksGiqHZp31j7Zp7zlCNV7p_08uViwP_Nbzfn3g6hhw/viewform) to get the access to the dataset. Decompress the embodiedscan and the directory should be orgainized as
56
+ ```
57
+ ├── data
58
+ │ ├── metadata
59
+ │ │ ├── embodiedscan
60
+ │ │ │ ├── embodiedscan_infos_train.pkl
61
+ │ │ │ ├── embodiedscan_infos_val.pkl
62
+ │ │ │ └── embodiedscan_infos_test.pkl
63
+ ```
64
+
65
+ ### Meta Information
66
+ 1. Prepare the object proposals. For training set, we directly use the ground truth via the following command.
67
+ ```bash
68
+ python scripts/3d/preprocessing/extract_gt_box.py
69
+ ```
70
+ For the validation set, we utilize the object proposals detected by Mask3D. LEO provided the corresponding annotation results [here](https://huggingface.co/datasets/huangjy-pku/LEO_data/blob/main/mask.zip). We place it at `data/scannet/mask` and process it using the following script.
71
+ ```bash
72
+ python scripts/3d/preprocessing/extract_pred_box.py
73
+ ```
74
+
75
+ 2. Prepare the maximum coverage sampling. Firstly we need to preprocess the voxel for each scan for maximum coverage sampling. The results will be saved at `data/metadata/pcd_discrete_0.1.pkl`.
76
+ ```bash
77
+ python scripts/3d/preprocessing/convert_pcd_to_voxel.py
78
+ ```
79
+ And then we perform the maximum coverage sampling offiline, and the results will be saved at `data/metadata/scannet_select_frames.json`.
80
+ ```
81
+ python scripts/3d/preprocessing/max_coverage_sampling.py
82
+ ```
83
+
84
+ ### Downstream Benchmarks
85
+ 1. SQA3D: Download the [SQA3D](https://github.com/SilongYong/SQA3D?tab=readme-ov-file) and convert the annotation to the LLaVA format using the following script.
86
+ ```bash
87
+ python scripts/3d/preprocessing/process_sqa3d.py
88
+ ```
89
+
90
+ 2. ScanQA: Download the [ScanQA](https://github.com/ATR-DBI/ScanQA/blob/main/docs/dataset.md) and convert the annotation using the following script.
91
+ ```bash
92
+ python scripts/3d/preprocessing/process_scanqa.py
93
+ ```
94
+
95
+ 3. ScanRefer: Download the [ScanRefer](https://daveredrum.github.io/ScanRefer/), and then run the following command.
96
+ ```bash
97
+ python scripts/3d/preprocessing/process_scanrefer.py
98
+ ```
99
+
100
+ 4. Scan2Cap: Convert the annotation of ScanRefer to Scan2Cap.
101
+ ```bash
102
+ python scripts/3d/preprocessing/process_scan2cap.py
103
+ ```
104
+
105
+ 5. Multi3DRefer: Download the [Multi3DRefer](https://github.com/3dlg-hcvc/M3DRef-CLIP).
106
+ ```bash
107
+ python scripts/3d/preprocessing/process_multi3drefer.py
108
+ ```