File size: 2,208 Bytes
93d1229
adf47f6
 
 
93d1229
adf47f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93d1229
7b90601
f6fa694
fd393d3
5ad90bd
55a7f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
705db8b
7b90601
705db8b
fd393d3
f6fa694
fd393d3
8f93956
3a704bf
2acf1b9
f99c2c5
 
66d0583
 
7b90601
 
f6fa694
7b90601
8f93956
ba70404
7b90601
ba70404
 
66d0583
 
7b90601
 
be2abc0
ba70404
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
annotations_creators:
- other
language:
- en
language_creators:
- other
license:
- mit
multilinguality:
- monolingual
pretty_name: twitter financial news
size_categories:
- 10K<n<100K
source_datasets:
- original
tags:
- twitter
- finance
- markets
- stocks
- wallstreet
- quant
- hedgefunds
- markets
task_categories:
- text-classification
task_ids:
- multi-class-classification
---

### Dataset Description

The Twitter Financial News dataset is an English-language dataset containing an annotated corpus of finance-related tweets. The dataset is split into two groups:
1. Topic classification: Totals 21,107 documents. Multi-class classification consisting of 20 labels:

```python
topics = {
    0:'Analyst Update',
    1:'Fed | Central Banks',
    2:'Company | Product News',
    3:'Treasuries | Corporate Debt',
    4:'Dividend',
    5:'Earnings',
    6:'Energy | Oil',
    7:'Financials',
    8:'Currencies',
    9:'General News | Opinion',
    10:'Gold | Metals | Materials',
    11:'IPO',
    12:'Legal | Regulation',
    13:'M&A | Investments',
    14:'Macro',
    15:'Markets',
    16:'Politics',
    17:'Personnel Change',
    18:'Stock Commentary',
    19:'Stock Movement'
}
```

2. Sentiment analysis: Totals 11,932 documents.

The data was collected using the Twitter API. The current dataset supports the multi-class classification task.

### Task 1: Sentiment Analysis

# Data Splits
There are 2 splits: train and validation. Below are the statistics:

| Dataset Split | Number of Instances in Split                |
| ------------- | ------------------------------------------- |
| Train         | 9,938                                       |
| Validation    | 2,486                                       |


### Task 2: Topic Classification

# Data Splits
There are 2 splits: train and validation. Below are the statistics:

| Dataset Split | Number of Instances in Split                |
| ------------- | ------------------------------------------- |
| Train         | 16,990                                      |
| Validation    | 4,118                                       |


# Licensing Information
The Twitter Financial Dataset version 1.0.0 is released under the MIT License.