NC_Crime / NC_Crime.py
zwn22's picture
Update NC_Crime.py
6eb7b56 verified
raw
history blame
10.8 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
from typing import List
import datasets
import logging
import pandas as pd
from pyproj import Transformer
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {NC Crime Dataset},
author={huggingface, Inc.
},
year={2024}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
The dataset, compiled from public police incident reports across various cities in North Carolina, covers a period from the early 2000s through to 2024. It is intended to facilitate the study of crime trends and patterns.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = ""
_URLS = ""
class NCCrimeDataset(datasets.GeneratorBasedBuilder):
"""Dataset for North Carolina Crime Incidents."""
_URLS = _URLS
VERSION = datasets.Version("1.0.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"year": datasets.Value("int64"),
"city": datasets.Value("string"),
"crime_major_category": datasets.Value("string"),
"crime_detail": datasets.Value("string"),
"latitude": datasets.Value("float64"),
"longitude": datasets.Value("float64"),
"occurance_time": datasets.Value("string"),
"clear_status": datasets.Value("string"),
"incident_address": datasets.Value("string"),
"notes": datasets.Value("string"),
}),
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
# Use the raw GitHub link to download the CSV file
cary_path = dl_manager.download_and_extract("https://data.townofcary.org/api/explore/v2.1/catalog/datasets/cpd-incidents/exports/csv?lang=en&timezone=US%2FEastern&use_labels=true&delimiter=%2C")
durham_path = dl_manager.download_and_extract("https://www.arcgis.com/sharing/rest/content/items/7132216432df4957830593359b0c4030/data")
# chapel_hill_path = dl_manager.download_and_extract("https://drive.google.com/uc?export=download&id=19cZzyedCLUtQt9Ko4bcOixWIJHBn9CfI")
# raleigh_path = dl_manager.download_and_extract("https://drive.google.com/uc?export=download&id=1SZi4e01TxwuDDb6k9EU_7i-qTP1Xq2sm")
# Cary
# "https://data.townofcary.org/api/explore/v2.1/catalog/datasets/cpd-incidents/exports/csv?lang=en&timezone=US%2FEastern&use_labels=true&delimiter=%2C",
# Durham
# "https://www.arcgis.com/sharing/rest/content/items/7132216432df4957830593359b0c4030/data",
# Raleigh
# "https://drive.google.com/uc?export=download&id=19cZzyedCLUtQt9Ko4bcOixWIJHBn9CfI",
# Chapel Hill
# "https://drive.google.com/uc?export=download&id=1SZi4e01TxwuDDb6k9EU_7i-qTP1Xq2sm"
cary_df = self._preprocess_cary(cary_path)
durham_df = self._preprocess_durham(durham_path)
# raleigh_df = self._preprocess_raleigh(raleigh_path)
# chapel_hill_df = self._preprocess_chapel_hill(chapel_hill_path)
# combined_df = pd.concat([cary_df, durham_df, raleigh_df, chapel_hill_df], ignore_index=True)
combined_df = pd.concat([cary_df, durham_df], ignore_index=True)
combined_file_path = os.path.join(dl_manager.download_dir, "combined_dataset.csv")
combined_df.to_csv(combined_file_path, index=False)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": combined_file_path})
]
def _preprocess_durham(self, file_path):
# Load the dataset
Durham = pd.read_excel(file_path)
# Clean the 'Weapon' column
Durham['Weapon'] = Durham['Weapon'].replace(['(blank)', 'Not Applicable/None', 'Unknown/Not Stated'], None)
# Define the category mapping
category_mapping = {
'Theft': ['LARCENY - AUTOMOBILE PARTS OR ACCESSORIES', 'TOWED/ABANDONED VEHICLE', 'MOTOR VEHICLE THEFT', 'BURGLARY', 'LARCENY - FROM MOTOR VEHICLE', 'LARCENY - SHOPLIFTING', 'LOST PROPERTY', 'VANDALISM', 'LARCENY - ALL OTHER', 'LARCENY - FROM BUILDING', 'RECOVERED STOLEN PROPERTY (OTHER JURISDICTION)', 'LARCENY - POCKET-PICKING', 'LARCENY - FROM COIN-OPERATED DEVICE', 'LARCENY - PURSESNATCHING'],
'Fraud': ['FRAUD-IDENTITY THEFT', 'EMBEZZLEMENT', 'COUNTERFEITING/FORGERY', 'FRAUD - CONFIDENCE GAMES/TRICKERY', 'FRAUD - CREDIT CARD/ATM', 'FRAUD - UNAUTHORIZED USE OF CONVEYANCE', 'FRAUD - FALSE PRETENSE', 'FRAUD - IMPERSONATION', 'FRAUD - WIRE/COMPUTER/OTHER ELECTRONIC', 'FRAUD - WORTHLESS CHECKS', 'FRAUD-FAIL TO RETURN RENTAL VEHICLE', 'FRAUD-HACKING/COMPUTER INVASION', 'FRAUD-WELFARE FRAUD'],
'Assault': ['SIMPLE ASSAULT', 'AGGRAVATED ASSAULT'],
'Drugs': ['DRUG/NARCOTIC VIOLATIONS', 'DRUG EQUIPMENT/PARAPHERNALIA'],
'Sexual Offenses': ['SEX OFFENSE - FORCIBLE RAPE', 'SEX OFFENSE - SEXUAL ASSAULT WITH AN OBJECT', 'SEX OFFENSE - FONDLING', 'SEX OFFENSE - INDECENT EXPOSURE', 'SEX OFFENSE - FORCIBLE SODOMY', 'SEX OFFENSE - STATUTORY RAPE', 'SEX OFFENSE - PEEPING TOM', 'SEX OFFENSE - INCEST'],
'Homicide': ['HOMICIDE-MURDER/NON-NEGLIGENT MANSLAUGHTER', 'JUSTIFIABLE HOMICIDE', 'HOMICIDE - NEGLIGENT MANSLAUGHTER'],
'Arson': ['ARSON'],
'Kidnapping': ['KIDNAPPING/ABDUCTION'],
'Weapons Violations': ['WEAPON VIOLATIONS'],
'Traffic Violations': ['ALL TRAFFIC (EXCEPT DWI)'],
'Disorderly Conduct': ['DISORDERLY CONDUCT', 'DISORDERLY CONDUCT-DRUNK AND DISRUPTIVE', 'DISORDERLY CONDUCT-FIGHTING (AFFRAY)', 'DISORDERLY CONDUCT-UNLAWFUL ASSEMBLY'],
'Gambling': ['GAMBLING - OPERATING/PROMOTING/ASSISTING', 'GAMBLING - BETTING/WAGERING'],
'Animal-related Offenses': ['ANIMAL CRUELTY'],
'Prostitution-related Offenses': ['PROSTITUTION', 'PROSTITUTION - ASSISTING/PROMOTING', 'PROSTITUTION - PURCHASING']
}
# Function to categorize crime
def categorize_crime(crime):
for category, crimes in category_mapping.items():
if crime in crimes:
return category
return 'Miscellaneous'
# Coordinate transformation function
def convert_coordinates(x, y):
transformer = Transformer.from_crs("epsg:2264", "epsg:4326", always_xy=True)
lon, lat = transformer.transform(x, y)
return pd.Series([lat, lon])
# Create a new DataFrame with simplified crime categories
Durham_new = pd.DataFrame({
# Your DataFrame creation code
})
# Convert coordinates and round/fill missing values
Durham_new[['latitude', 'longitude']] = Durham.apply(lambda row: convert_coordinates(row['X'], row['Y']), axis=1).round(5).fillna(0)
# Filter records and handle missing values
Durham_new = Durham_new[Durham_new['year'] >= 2015].fillna("No Data")
return Durham_new
def _preprocess_cary(self, file_path):
# Load the dataset
df = pd.read_csv(file_path, low_memory=False).dropna(subset=['Year'])
# Define the crime categorization function
def categorize_crime(crime):
crime_mapping = {
'Theft': ['BURGLARY', 'MOTOR VEHICLE THEFT', 'LARCENY'],
'Arson': ['ARSON'],
'Assault': ['AGGRAVATED ASSAULT'],
'Homicide': ['MURDER'],
'Robbery': ['ROBBERY']
}
for category, crimes in crime_mapping.items():
if crime in crimes:
return category
return 'Miscellaneous'
# Apply the crime categorization function and preprocess the dataset
processed_df = pd.DataFrame({
"year": df["Year"].astype(int),
"city": "Cary",
"crime_major_category": df['Crime Category'].apply(categorize_crime).str.title(),
"crime_detail": df['Crime Type'].str.title(),
"latitude": df['Lat'].fillna(0).round(5).fillna(0),
"longitude": df['Lon'].fillna(0).round(5).fillna(0),
"occurance_time": pd.to_datetime(df['Begin Date Of Occurrence'] + ' ' + df['Begin Time Of Occurrence']).dt.strftime('%Y/%m/%d %H:%M:%S'),
"clear_status": None,
"incident_address": df['Geo Code'],
"notes": 'District: '+ df['District'].str.title() + ' Violent Property: ' + df['Violent Property'].str.title()
}).fillna("No Data")
# Filter the dataset for records from 2015 onwards
processed_df = processed_df[processed_df['year'] >= 2015]
return processed_df
def _generate_examples(self, filepath):
# Read the CSV file
df = pd.read_csv(filepath)
# Iterate over the rows and yield examples
for i, row in df.iterrows():
yield i, {
"year": int(row["year"]),
"city": row["city"],
"crime_major_category": row["crime_major_category"],
"crime_detail": row["crime_detail"],
"latitude": float(row["latitude"]),
"longitude": float(row["longitude"]),
"occurance_time": row["occurance_time"],
"clear_status": row["clear_status"],
"incident_address": row["incident_address"],
"notes": row["notes"],
}