# coding=utf-8 # Lint as: python3 """Passage Ranking fintune dataset.""" import json import datasets _CITATION = """ @misc{bajaj2018ms, title={MS MARCO: A Human Generated MAchine Reading COmprehension Dataset}, author={Payal Bajaj and Daniel Campos and Nick Craswell and Li Deng and Jianfeng Gao and Xiaodong Liu and Rangan Majumder and Andrew McNamara and Bhaskar Mitra and Tri Nguyen and Mir Rosenberg and Xia Song and Alina Stoica and Saurabh Tiwary and Tong Wang}, year={2018}, eprint={1611.09268}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = "MSMARCO Passage Ranking datas" _DATASET_URLS = { 'train': "https://modelscope.cn/api/v1/datasets/zyznull/msmarco-passage-ranking/repo/files?Revision=master&FilePath=train.jsonl.gz", 'dev': "https://modelscope.cn/api/v1/datasets/zyznull/msmarco-passage-ranking/repo/files?Revision=master&FilePath=dev.jsonl.gz", } class MsMarcoPassage(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig(version=VERSION, description="MS MARCO passage train/dev datasets"), ] def _info(self): features = datasets.Features({ 'query_id': datasets.Value('string'), 'query': datasets.Value('string'), 'positive_passages': [ {'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} ], 'negative_passages': [ {'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} ], }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage="", # License for the dataset if available license="", # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) splits = [ datasets.SplitGenerator( name=split, gen_kwargs={ "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], }, ) for split in downloaded_files ] return splits def _generate_examples(self, files): """Yields examples.""" for filepath in files: with open(filepath, encoding="utf-8") as f: for line in f: data = json.loads(line) if data.get('negative_passages') is None: data['negative_passages'] = [] if data.get('positive_passages') is None: data['positive_passages'] = [] yield data['query_id'], data