File size: 7,779 Bytes
122bf22
 
2d6f13c
122bf22
e6b0814
122bf22
e6b0814
122bf22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6f13c
122bf22
2d6f13c
122bf22
e6b0814
 
122bf22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b0814
122bf22
 
 
 
e6b0814
 
 
122bf22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b0814
 
 
122bf22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b0814
122bf22
 
 
 
 
e6b0814
 
 
122bf22
 
 
 
 
 
 
 
 
e6b0814
 
 
 
2d6f13c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6b0814
122bf22
 
 
 
 
 
 
 
 
e6b0814
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.models.mamba.modeling_mamba import (
    MambaPreTrainedModel,
    MambaModel,
    MambaCache,
    MAMBA_INPUTS_DOCSTRING,
    MAMBA_START_DOCSTRING,
)
from typing import List, Optional, Tuple, Union
from transformers.utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    add_code_sample_docstrings,
)
from dataclasses import dataclass


_CHECKPOINT_FOR_DOC = "state-spaces/mamba-130m-hf"
_CONFIG_FOR_DOC = "MambaConfig"


@dataclass
class MambaSequenceClassifierOutput(ModelOutput):
    """
    Base class for outputs of sentence classification models.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        cache_params (list of five `torch.FloatTensor` of shape `(batch_size, hidden_size, num_hidden_layers)`):
            The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
            avoid providing the old `input_ids`.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    # cache_params: Optional[MambaCache] = None,
    cache_params: Optional[List[torch.FloatTensor]] = None
    # cache_params: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None


class MambaClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels, bias=False)
        self.out_proj.weight.data.normal_(mean=0.0, std=config.initializer_range)

        self.config = config

    def forward(self, features, **kwargs):
        x = features
        x = self.out_proj(x)
        return x


@add_start_docstrings(
    """Mamba Model backbone with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks.""",
    MAMBA_START_DOCSTRING,
)
class MambaForSequenceClassification(MambaPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.backbone = MambaModel(config)
        self.classifier = MambaClassificationHead(config)

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(
        MAMBA_INPUTS_DOCSTRING.format("batch_size, sequence_length")
    )
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=MambaSequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        cache_params: Optional[MambaCache] = None,
        use_cache: Optional[bool] = None,
        labels: Optional[torch.LongTensor] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple, MambaSequenceClassifierOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss.
            Indices should be in `[0, ..., config.num_labels - 1]`.
            If `config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        mamba_outputs = self.backbone(
            input_ids,
            cache_params=cache_params,
            use_cache=use_cache,
            inputs_embeds=inputs_embeds,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = mamba_outputs[0]
        logits = self.classifier(hidden_states)

        if input_ids is not None:
            batch_size, sequence_length = input_ids.shape[:2]
        else:
            batch_size, sequence_length = inputs_embeds.shape[:2]
        assert (
            self.config.pad_token_id is not None or batch_size == 1
        ), "Cannot handle batch sizes > 1 if no padding token is defined."

        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = (
                    torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                )
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1
                print(
                    f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
                    "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
                )

        pooled_logits = logits[
            torch.arange(batch_size, device=logits.device), sequence_lengths
        ]

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (
                    labels.dtype == torch.long or labels.dtype == torch.int
                ):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(
                    pooled_logits.view(-1, self.num_labels), labels.view(-1)
                )
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)

        if not return_dict:
            output = (pooled_logits,) + mamba_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return MambaSequenceClassifierOutput(
            loss=loss,
            logits=pooled_logits,
            cache_params=mamba_outputs.cache_params,
            hidden_states=mamba_outputs.hidden_states,
        )