End of training
Browse files
README.md
CHANGED
@@ -15,13 +15,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [dathi103/gbert-job](https://huggingface.co/dathi103/gbert-job) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
-
- Hard: {'precision': 0.
|
20 |
-
- Soft: {'precision': 0.
|
21 |
-
- Overall Precision: 0.
|
22 |
-
- Overall Recall: 0.
|
23 |
-
- Overall F1: 0.
|
24 |
-
- Overall Accuracy: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -50,13 +50,13 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch | Step | Validation Loss | Hard | Soft
|
54 |
-
|
55 |
-
| No log | 1.0 |
|
56 |
-
| No log | 2.0 |
|
57 |
-
|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
|
61 |
|
62 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [dathi103/gbert-job](https://huggingface.co/dathi103/gbert-job) on an unknown dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.1383
|
19 |
+
- Hard: {'precision': 0.6893203883495146, 'recall': 0.7802197802197802, 'f1': 0.7319587628865979, 'number': 364}
|
20 |
+
- Soft: {'precision': 0.6329113924050633, 'recall': 0.7575757575757576, 'f1': 0.6896551724137931, 'number': 66}
|
21 |
+
- Overall Precision: 0.6802
|
22 |
+
- Overall Recall: 0.7767
|
23 |
+
- Overall F1: 0.7253
|
24 |
+
- Overall Accuracy: 0.9570
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
55 |
+
| No log | 1.0 | 178 | 0.1186 | {'precision': 0.5478260869565217, 'recall': 0.6923076923076923, 'f1': 0.6116504854368932, 'number': 364} | {'precision': 0.5070422535211268, 'recall': 0.5454545454545454, 'f1': 0.5255474452554744, 'number': 66} | 0.5424 | 0.6698 | 0.5994 | 0.9511 |
|
56 |
+
| No log | 2.0 | 356 | 0.1073 | {'precision': 0.6247030878859857, 'recall': 0.7225274725274725, 'f1': 0.6700636942675159, 'number': 364} | {'precision': 0.573170731707317, 'recall': 0.7121212121212122, 'f1': 0.6351351351351352, 'number': 66} | 0.6163 | 0.7209 | 0.6645 | 0.9572 |
|
57 |
+
| 0.1381 | 3.0 | 534 | 0.1310 | {'precision': 0.6836734693877551, 'recall': 0.7362637362637363, 'f1': 0.7089947089947091, 'number': 364} | {'precision': 0.5632183908045977, 'recall': 0.7424242424242424, 'f1': 0.6405228758169934, 'number': 66} | 0.6618 | 0.7372 | 0.6975 | 0.9574 |
|
58 |
+
| 0.1381 | 4.0 | 712 | 0.1350 | {'precision': 0.7019704433497537, 'recall': 0.782967032967033, 'f1': 0.7402597402597403, 'number': 364} | {'precision': 0.6024096385542169, 'recall': 0.7575757575757576, 'f1': 0.6711409395973154, 'number': 66} | 0.6851 | 0.7791 | 0.7291 | 0.9564 |
|
59 |
+
| 0.1381 | 5.0 | 890 | 0.1383 | {'precision': 0.6893203883495146, 'recall': 0.7802197802197802, 'f1': 0.7319587628865979, 'number': 364} | {'precision': 0.6329113924050633, 'recall': 0.7575757575757576, 'f1': 0.6896551724137931, 'number': 66} | 0.6802 | 0.7767 | 0.7253 | 0.9570 |
|
60 |
|
61 |
|
62 |
### Framework versions
|