from torch.utils.data import Dataset from torchvision.datasets.utils import download_url import torch import numpy as np import random import decord from decord import VideoReader import json import os from BLIP_main.data.utils import pre_caption decord.bridge.set_bridge("torch") class ImageNorm(object): """Apply Normalization to Image Pixels on GPU """ def __init__(self, mean, std): self.mean = torch.tensor(mean).view(1, 3, 1, 1) self.std = torch.tensor(std).view(1, 3, 1, 1) def __call__(self, img): if torch.max(img) > 1 and self.mean.max() <= 1: img.div_(255.) return img.sub_(self.mean).div_(self.std) def load_jsonl(filename): with open(filename, "r") as f: return [json.loads(l.strip("\n")) for l in f.readlines()] class VideoDataset(Dataset): def __init__(self, video_root, ann_root, num_frm=4, frm_sampling_strategy="rand", max_img_size=384, video_fmt='.mp4'): ''' image_root (string): Root directory of video ann_root (string): directory to store the annotation file ''' url = 'https://storage.googleapis.com/sfr-vision-language-research/datasets/msrvtt_test.jsonl' filename = 'msrvtt_test.jsonl' download_url(url,ann_root) self.annotation = load_jsonl(os.path.join(ann_root,filename)) self.num_frm = num_frm self.frm_sampling_strategy = frm_sampling_strategy self.max_img_size = max_img_size self.video_root = video_root self.video_fmt = video_fmt self.img_norm = ImageNorm(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) self.text = [pre_caption(ann['caption'],40) for ann in self.annotation] self.txt2video = [i for i in range(len(self.annotation))] self.video2txt = self.txt2video def __len__(self): return len(self.annotation) def __getitem__(self, index): ann = self.annotation[index] video_path = os.path.join(self.video_root, ann['clip_name'] + self.video_fmt) vid_frm_array = self._load_video_from_path_decord(video_path, height=self.max_img_size, width=self.max_img_size) video = self.img_norm(vid_frm_array.float()) return video, ann['clip_name'] def _load_video_from_path_decord(self, video_path, height=None, width=None, start_time=None, end_time=None, fps=-1): try: if not height or not width: vr = VideoReader(video_path) else: vr = VideoReader(video_path, width=width, height=height) vlen = len(vr) if start_time or end_time: assert fps > 0, 'must provide video fps if specifying start and end time.' start_idx = min(int(start_time * fps), vlen) end_idx = min(int(end_time * fps), vlen) else: start_idx, end_idx = 0, vlen if self.frm_sampling_strategy == 'uniform': frame_indices = np.arange(start_idx, end_idx, vlen / self.num_frm, dtype=int) elif self.frm_sampling_strategy == 'rand': frame_indices = sorted(random.sample(range(vlen), self.num_frm)) elif self.frm_sampling_strategy == 'headtail': frame_indices_head = sorted(random.sample(range(vlen // 2), self.num_frm // 2)) frame_indices_tail = sorted(random.sample(range(vlen // 2, vlen), self.num_frm // 2)) frame_indices = frame_indices_head + frame_indices_tail else: raise NotImplementedError('Invalid sampling strategy {} '.format(self.frm_sampling_strategy)) raw_sample_frms = vr.get_batch(frame_indices) except Exception as e: return None raw_sample_frms = raw_sample_frms.permute(0, 3, 1, 2) return raw_sample_frms