File size: 24,314 Bytes
4dd3b94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---

# label_model_merged

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. 
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. 

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("davanstrien/label_model_merged")

topic_model.get_topic_info()
```

## Topic overview

* Number of topics: 247
* Number of training documents: 14986

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| -1 | pre - roll - heavy - farm - health | 5 | -1_pre_roll_heavy_farm | 
| 0 | label_1 label_2 - label_0 label_1 label_2 - label_1 - label_0 label_1 - label_2 | 1386 | 0_label_1 label_2_label_0 label_1 label_2_label_1_label_0 label_1 | 
| 1 | label_1 label_2 label_3 - label_3 label_4 label_5 - label_4 label_5 - label_2 label_3 label_4 - label_5 | 1042 | 1_label_1 label_2 label_3_label_3 label_4 label_5_label_4 label_5_label_2 label_3 label_4 | 
| 2 | negative positive - positive negative - negative - positive - target | 803 | 2_negative positive_positive negative_negative_positive | 
| 3 | loc misc org - misc org - loc misc - misc - org loc | 652 | 3_loc misc org_misc org_loc misc_misc | 
| 4 | neutral positive - neutral - positive negative - negative - positive | 509 | 4_neutral positive_neutral_positive negative_negative | 
| 5 | label_0 - country - city - label_1 - label_0 label_1 | 357 | 5_label_0_country_city_label_1 | 
| 6 | contradiction - entailment - neutral -  -  | 351 | 6_contradiction_entailment_neutral_ | 
| 7 | label_0 - positive -  -  -  | 335 | 7_label_0_positive__ | 
| 8 | 99 -  -  -  -  | 327 | 8_99___ | 
| 9 | label_1 label_2 label_3 - label_2 label_3 label_4 - label_3 label_4 - label_2 label_3 - label_4 | 302 | 9_label_1 label_2 label_3_label_2 label_3 label_4_label_3 label_4_label_2 label_3 | 
| 10 | entailment - true - child - related - non | 257 | 10_entailment_true_child_related | 
| 11 | terrier - snake - dog - bear - wolf | 245 | 11_terrier_snake_dog_bear | 
| 12 | loc misc org - loc misc - misc org - misc - org loc | 240 | 12_loc misc org_loc misc_misc org_misc | 
| 13 | label_5 label_6 label_7 - label_6 label_7 - label_4 label_5 label_6 - label_5 label_6 - label_7 | 231 | 13_label_5 label_6 label_7_label_6 label_7_label_4 label_5 label_6_label_5 label_6 | 
| 14 | calendar - greeting - weather - transfer - calculator | 229 | 14_calendar_greeting_weather_transfer | 
| 15 | label_1 label_2 label_3 - label_2 label_3 - label_3 - label_1 label_2 - label_0 label_1 label_2 | 226 | 15_label_1 label_2 label_3_label_2 label_3_label_3_label_1 label_2 | 
| 16 | delete - unrelated - bad - related - rel | 207 | 16_delete_unrelated_bad_related | 
| 17 | label_12 label_13 label_14 - label_11 label_12 label_13 - label_13 label_14 - label_12 label_13 - label_10 label_11 label_12 | 172 | 17_label_12 label_13 label_14_label_11 label_12 label_13_label_13 label_14_label_12 label_13 | 
| 18 | loc org - org loc - org - loc - loc loc | 166 | 18_loc org_org loc_org_loc | 
| 19 | left - right - stop - yes - zero | 130 | 19_left_right_stop_yes | 
| 20 | label_6 label_60 label_61 - label_60 label_61 - label_60 label_61 label_62 - label_62 label_63 - label_59 label_6 label_60 | 123 | 20_label_6 label_60 label_61_label_60 label_61_label_60 label_61 label_62_label_62 label_63 | 
| 21 | unrelated -  -  -  -  | 117 | 21_unrelated___ | 
| 22 | forest - industrial - river - transport - disaster | 110 | 22_forest_industrial_river_transport | 
| 23 | label_4 label_5 label_6 - label_5 label_6 - label_6 - label_1 label_2 label_3 - label_3 label_4 label_5 | 107 | 23_label_4 label_5 label_6_label_5 label_6_label_6_label_1 label_2 label_3 | 
| 24 | question - quantity -  -  -  | 106 | 24_question_quantity__ | 
| 25 | healthy - leaf - rust - plant - mildew | 103 | 25_healthy_leaf_rust_plant | 
| 26 | disease - blood - bio - healthy - sexual | 100 | 26_disease_blood_bio_healthy | 
| 27 | work - group - corporation - person product - product | 92 | 27_work_group_corporation_person product | 
| 28 | surprise anger - sadness surprise - fear joy - anger fear - joy love | 80 | 28_surprise anger_sadness surprise_fear joy_anger fear | 
| 29 | duplicate - common - non -  -  | 78 | 29_duplicate_common_non_ | 
| 30 | steak - hamburger - restaurant - pizza - joint | 76 | 30_steak_hamburger_restaurant_pizza | 
| 31 | room - service - transport - product - forest | 74 | 31_room_service_transport_product | 
| 32 | dis -  -  -  -  | 74 | 32_dis___ | 
| 33 |  -  -  -  -  | 73 | 33____ | 
| 34 | loc org - org - date - loc - set | 70 | 34_loc org_org_date_loc | 
| 35 | label_17 label_18 label_19 - label_18 label_19 - label_18 label_19 label_2 - label_19 label_2 - label_16 label_17 label_18 | 70 | 35_label_17 label_18 label_19_label_18 label_19_label_18 label_19 label_2_label_19 label_2 | 
| 36 | 03 - 02 - second -  -  | 65 | 36_03_02_second_ | 
| 37 | anger fear - joy love - surprise - joy - love | 65 | 37_anger fear_joy love_surprise_joy | 
| 38 | real - true - image - news -  | 64 | 38_real_true_image_news | 
| 39 |  -  -  -  -  | 63 | 39____ | 
| 40 | pos - neg - neu -  -  | 62 | 40_pos_neg_neu_ | 
| 41 | 45 - 30 - 55 - 35 - 10 | 61 | 41_45_30_55_35 | 
| 42 | ge - wifi - na - alpha - fan | 61 | 42_ge_wifi_na_alpha | 
| 43 | label_1 label_10 label_11 - label_10 label_11 - label_8 label_9 label_0 - label_9 label_0 label_1 - label_9 label_0 | 61 | 43_label_1 label_10 label_11_label_10 label_11_label_8 label_9 label_0_label_9 label_0 label_1 | 
| 44 | event - group - corporation - person product - product | 61 | 44_event_group_corporation_person product | 
| 45 | label_19 label_2 label_20 - label_2 label_20 - label_20 - label_18 label_19 label_2 - label_18 label_19 | 60 | 45_label_19 label_2 label_20_label_2 label_20_label_20_label_18 label_19 label_2 | 
| 46 | fear happy - sad - happy - disgust fear - angry | 58 | 46_fear happy_sad_happy_disgust fear | 
| 47 | battery - volume - chinese - juice - socks | 58 | 47_battery_volume_chinese_juice | 
| 48 | prep - nn - bio - cc - pro | 56 | 48_prep_nn_bio_cc | 
| 49 | good - poor - ok - great - bad | 56 | 49_good_poor_ok_great | 
| 50 | date - city - fur - day - ar | 54 | 50_date_city_fur_day | 
| 51 | 15 - 18 19 20 - 19 20 - 17 18 19 - 18 19 | 54 | 51_15_18 19 20_19 20_17 18 19 | 
| 52 | menu - price - num -  -  | 52 | 52_menu_price_num_ | 
| 53 | common - fat - loose - small - sugar | 52 | 53_common_fat_loose_small | 
| 54 | append_ - replace_ - append_ append_ - replace_ replace_ - append_ append_ append_ | 49 | 54_append__replace__append_ append__replace_ replace_ | 
| 55 | append_ - replace_ - append_ append_ - replace_ replace_ - append_ append_ append_ | 48 | 55_append__replace__append_ append__replace_ replace_ | 
| 56 | animals - flying - tech - dance - tiger | 48 | 56_animals_flying_tech_dance | 
| 57 | self - question - neutral - yes - greeting | 47 | 57_self_question_neutral_yes | 
| 58 | mt - cv - tr - tm - drug | 47 | 58_mt_cv_tr_tm | 
| 59 | organization person - location organization - organization - location - person | 46 | 59_organization person_location organization_organization_location | 
| 60 |  -  -  -  -  | 45 | 60____ | 
| 61 | joy - anger - sadness - sad - happy | 44 | 61_joy_anger_sadness_sad | 
| 62 | daisy - tulip - rose -  -  | 43 | 62_daisy_tulip_rose_ | 
| 63 | positive - negative - neutral - neutral positive - positive negative | 42 | 63_positive_negative_neutral_neutral positive | 
| 64 | windows - pm - 21 - office - 20 | 42 | 64_windows_pm_21_office | 
| 65 | label_14 label_15 - label_13 label_14 label_15 - label_15 - label_12 label_13 label_14 - label_11 label_12 label_13 | 42 | 65_label_14 label_15_label_13 label_14 label_15_label_15_label_12 label_13 label_14 | 
| 66 | position - statement - lead - request - study | 42 | 66_position_statement_lead_request | 
| 67 | business - news - entertainment - tech - sport | 41 | 67_business_news_entertainment_tech | 
| 68 | hate - speech - language - reporting - non | 41 | 68_hate_speech_language_reporting | 
| 69 | bd - nan - id - bg -  | 41 | 69_bd_nan_id_bg | 
| 70 | cream - burger - carrot - ice cream - salad | 41 | 70_cream_burger_carrot_ice cream | 
| 71 | human - machine - ai - artificial - art | 40 | 71_human_machine_ai_artificial | 
| 72 | open - high - tie - abstract - button | 40 | 72_open_high_tie_abstract | 
| 73 | label_23 label_24 label_25 - label_24 label_25 - label_22 label_23 label_24 - label_23 label_24 - label_21 label_22 label_23 | 40 | 73_label_23 label_24 label_25_label_24 label_25_label_22 label_23 label_24_label_23 label_24 | 
| 74 | label_8 label_9 label_0 - label_9 label_0 label_1 - label_9 label_0 - label_7 label_8 label_9 - label_8 label_9 | 39 | 74_label_8 label_9 label_0_label_9 label_0 label_1_label_9 label_0_label_7 label_8 label_9 | 
| 75 | cat - dog - cats - dogs - drinking | 39 | 75_cat_dog_cats_dogs | 
| 76 | org org - loc loc - org - misc - loc | 38 | 76_org org_loc loc_org_misc | 
| 77 | airplane - deer - bird - ship - frog | 38 | 77_airplane_deer_bird_ship | 
| 78 | label_32 label_33 label_34 - label_33 label_34 - label_31 label_32 label_33 - label_32 label_33 - label_30 label_31 label_32 | 38 | 78_label_32 label_33 label_34_label_33 label_34_label_31 label_32 label_33_label_32 label_33 | 
| 79 | true -  -  -  -  | 38 | 79_true___ | 
| 80 | family - sports - music - related - health | 38 | 80_family_sports_music_related | 
| 81 | star - positive - negative - amazon - negative positive | 37 | 81_star_positive_negative_amazon | 
| 82 | hospital - unknown - description - material - pad | 37 | 82_hospital_unknown_description_material | 
| 83 | threat - hate - reward - quality - content | 36 | 83_threat_hate_reward_quality | 
| 84 | music - speech - instrument - engine - wind | 35 | 84_music_speech_instrument_engine | 
| 85 | closure - annual - statement - issues - reward | 35 | 85_closure_annual_statement_issues | 
| 86 | adp - aux - sconj - pron - noun | 35 | 86_adp_aux_sconj_pron | 
| 87 | experience - location - skill - address - result | 35 | 87_experience_location_skill_address | 
| 88 |  -  -  -  -  | 34 | 88____ | 
| 89 | test - train - risk - non - high | 34 | 89_test_train_risk_non | 
| 90 | samoyed - corgi - husky - golden retriever - golden | 34 | 90_samoyed_corgi_husky_golden retriever | 
| 91 | unk - zero - 10 - 12 13 14 - 13 14 15 | 33 | 91_unk_zero_10_12 13 14 | 
| 92 | non - neutral - ok - lead -  | 33 | 92_non_neutral_ok_lead | 
| 93 | normal - covid - virus - regular - disorder | 33 | 93_normal_covid_virus_regular | 
| 94 | test - help - app - risk - joke | 32 | 94_test_help_app_risk | 
| 95 | replace_ - append_ - replace_ replace_ - append_ append_ - replace_ replace_ replace_ | 32 | 95_replace__append__replace_ replace__append_ append_ | 
| 96 | disease - issues - pressure - drug - blood | 31 | 96_disease_issues_pressure_drug | 
| 97 | women - casual - sexual - individual - use | 31 | 97_women_casual_sexual_individual | 
| 98 | address - balance - code - second - currency | 30 | 98_address_balance_code_second | 
| 99 | hate - non - neutral -  -  | 30 | 99_hate_non_neutral_ | 
| 100 | normal - cell - large - clean - healthy | 29 | 100_normal_cell_large_clean | 
| 101 | neutral - se -  -  -  | 29 | 101_neutral_se__ | 
| 102 | male - female - hair - skin - men | 29 | 102_male_female_hair_skin | 
| 103 | title - page - section - abstract - table | 28 | 103_title_page_section_abstract | 
| 104 | number - gender - case - person - fin | 28 | 104_number_gender_case_person | 
| 105 | man - bird - flower - long - double | 28 | 105_man_bird_flower_long | 
| 106 | contradiction - entailment - neutral -  -  | 28 | 106_contradiction_entailment_neutral_ | 
| 107 | non -  -  -  -  | 27 | 107_non___ | 
| 108 | tim - fac - org - pro - loc | 27 | 108_tim_fac_org_pro | 
| 109 | lincoln - jaguar - visual - audio - sony | 27 | 109_lincoln_jaguar_visual_audio | 
| 110 | statement - info - check - ad - news | 27 | 110_statement_info_check_ad | 
| 111 | ben - ext - root - exp - loc | 26 | 111_ben_ext_root_exp | 
| 112 | yes -  -  -  -  | 26 | 112_yes___ | 
| 113 | queen - jack - king - south - war | 26 | 113_queen_jack_king_south | 
| 114 |  -  -  -  -  | 26 | 114____ | 
| 115 | ft - cardinal - act - loc - loc loc | 25 | 115_ft_cardinal_act_loc | 
| 116 | bio - chemical - food -  -  | 25 | 116_bio_chemical_food_ | 
| 117 | ft - cardinal - act - loc - loc misc org | 25 | 117_ft_cardinal_act_loc | 
| 118 | metric - task -  -  -  | 25 | 118_metric_task__ | 
| 119 | email - age - patient - zip - organization | 25 | 119_email_age_patient_zip | 
| 120 | ent - im - ru - mat - art | 25 | 120_ent_im_ru_mat | 
| 121 | ex - pt - galaxy - moon - 8888 | 24 | 121_ex_pt_galaxy_moon | 
| 122 |  -  -  -  -  | 24 | 122____ | 
| 123 | neu - sad - dis - joy -  | 24 | 123_neu_sad_dis_joy | 
| 124 | label_122 - label_121 - label_120 - label_123 - label_119 | 24 | 124_label_122_label_121_label_120_label_123 | 
| 125 | mixed - positive - negative - neutral positive - neutral | 24 | 125_mixed_positive_negative_neutral positive | 
| 126 | date event - percent person - quantity - money - percent | 24 | 126_date event_percent person_quantity_money | 
| 127 | fear joy - sadness surprise - surprise - joy - sadness | 24 | 127_fear joy_sadness surprise_surprise_joy | 
| 128 | disgust - sadness surprise - joy love - surprise - joy | 24 | 128_disgust_sadness surprise_joy love_surprise | 
| 129 | magnet - motor - hello - undefined - start | 24 | 129_magnet_motor_hello_undefined | 
| 130 | loc loc - loc - pers - hi - en | 24 | 130_loc loc_loc_pers_hi | 
| 131 | event - pers - fac - pro - loc org | 24 | 131_event_pers_fac_pro | 
| 132 | disorder - body - patient - age - disease | 23 | 132_disorder_body_patient_age | 
| 133 | happiness - fear - anger disgust - disgust - sadness | 23 | 133_happiness_fear_anger disgust_disgust | 
| 134 | control - la - social - sin - civil | 23 | 134_control_la_social_sin | 
| 135 | label_98 label_99 - label_97 label_98 label_99 - label_97 label_98 - label_95 label_96 - label_96 label_97 label_98 | 23 | 135_label_98 label_99_label_97 label_98 label_99_label_97 label_98_label_95 label_96 | 
| 136 | greek - chinese - italian - japanese - dutch | 23 | 136_greek_chinese_italian_japanese | 
| 137 | clean -  -  -  -  | 23 | 137_clean___ | 
| 138 | protein - chemical - cell -  -  | 22 | 138_protein_chemical_cell_ | 
| 139 | treatment - disease - location organization - organization person - organization | 22 | 139_treatment_disease_location organization_organization person | 
| 140 | institution - tools - org - loc - organization | 22 | 140_institution_tools_org_loc | 
| 141 | statement - question -  -  -  | 22 | 141_statement_question__ | 
| 142 | period - question - noun - number -  | 21 | 142_period_question_noun_number | 
| 143 | regular -  -  -  -  | 21 | 143_regular___ | 
| 144 | rna -  -  -  -  | 21 | 144_rna___ | 
| 145 | rs -  -  -  -  | 21 | 145_rs___ | 
| 146 | address - id - job - email - country | 21 | 146_address_id_job_email | 
| 147 | neg - neu - good -  -  | 21 | 147_neg_neu_good_ | 
| 148 | label_122 label_123 - label_123 - label_122 - label_121 - label_120 | 20 | 148_label_122 label_123_label_123_label_122_label_121 | 
| 149 | drink - tea - wine - coffee - soft | 20 | 149_drink_tea_wine_coffee | 
| 150 | miscellaneous - organization - percent - money - percent person | 20 | 150_miscellaneous_organization_percent_money | 
| 151 | description - invoice - zip - state - city | 20 | 151_description_invoice_zip_state | 
| 152 | sports - tech - business - sport -  | 20 | 152_sports_tech_business_sport | 
| 153 | ok - vin - rl - ft - year | 20 | 153_ok_vin_rl_ft | 
| 154 | healthy -  -  -  -  | 20 | 154_healthy___ | 
| 155 | association - event - ticket - disaster - map | 20 | 155_association_event_ticket_disaster | 
| 156 | 10 11 - 10 11 12 - 11 12 - 11 - 11 12 13 | 19 | 156_10 11_10 11 12_11 12_11 | 
| 157 | noun num pron - num pron propn - num pron - pron propn punct - pron propn | 19 | 157_noun num pron_num pron propn_num pron_pron propn punct | 
| 158 | cell - organ - organism - multi - tissue | 18 | 158_cell_organ_organism_multi | 
| 159 | 02 - ent - express - act - delete | 18 | 159_02_ent_express_act | 
| 160 | sym verb adj - verb adj adp - intj noun num - det intj noun - adj adp adv | 18 | 160_sym verb adj_verb adj adp_intj noun num_det intj noun | 
| 161 | 12 -  -  -  -  | 18 | 161_12___ | 
| 162 | org org - org - drug -  -  | 18 | 162_org org_org_drug_ | 
| 163 | short - long - sl - ac - pad | 18 | 163_short_long_sl_ac | 
| 164 | plastic - paper - glass - metal - sheet | 18 | 164_plastic_paper_glass_metal | 
| 165 | ii - blank - iii - vi - et | 17 | 165_ii_blank_iii_vi | 
| 166 | normal - virus - desert - smoke - pressure | 17 | 166_normal_virus_desert_smoke | 
| 167 | skill - skills -  -  -  | 17 | 167_skill_skills__ | 
| 168 | protein - rna - cell - line - type | 17 | 168_protein_rna_cell_line | 
| 169 | korean - russian - dutch - french - thai | 17 | 169_korean_russian_dutch_french | 
| 170 | rainbow - rain - snow - color - green | 17 | 170_rainbow_rain_snow_color | 
| 171 | company - role - institution - skill - loc org | 16 | 171_company_role_institution_skill | 
| 172 | exp - pp - intj - punc - prep | 16 | 172_exp_pp_intj_punc | 
| 173 | key - menu -  -  -  | 16 | 173_key_menu__ | 
| 174 | adult - young - child - male - female | 16 | 174_adult_young_child_male | 
| 175 | normal -  -  -  -  | 16 | 175_normal___ | 
| 176 | mask - bright - sharp - head - normal | 16 | 176_mask_bright_sharp_head | 
| 177 | anger disgust fear - anger disgust - disgust fear - disgust - surprise anger | 16 | 177_anger disgust fear_anger disgust_disgust fear_disgust | 
| 178 |  -  -  -  -  | 16 | 178____ | 
| 179 | objective - non - neutral -  -  | 16 | 179_objective_non_neutral_ | 
| 180 | cr - sd - db -  -  | 16 | 180_cr_sd_db_ | 
| 181 |  -  -  -  -  | 16 | 181____ | 
| 182 | label_29 label_3 label_30 - label_27 label_28 label_29 - label_26 label_27 label_28 - label_28 label_29 label_3 - label_29 label_3 | 16 | 182_label_29 label_3 label_30_label_27 label_28 label_29_label_26 label_27 label_28_label_28 label_29 label_3 | 
| 183 | test -  -  -  -  | 15 | 183_test___ | 
| 184 | good - bad - non -  -  | 15 | 184_good_bad_non_ | 
| 185 | local - por - art - da - em | 15 | 185_local_por_art_da | 
| 186 | label_122 label_123 - label_97 label_98 label_99 - label_97 label_98 - label_96 label_97 label_98 - label_98 label_99 | 15 | 186_label_122 label_123_label_97 label_98 label_99_label_97 label_98_label_96 label_97 label_98 | 
| 187 | prod - loc - evt - misc - org org | 15 | 187_prod_loc_evt_misc | 
| 188 | invoice - email - form - letter - report | 15 | 188_invoice_email_form_letter | 
| 189 | end - head - cross -  -  | 15 | 189_end_head_cross_ | 
| 190 | target - instrument - opinion - question - price | 15 | 190_target_instrument_opinion_question | 
| 191 | unrelated - support -  -  -  | 15 | 191_unrelated_support__ | 
| 192 | ru - pl - bg - en - es | 14 | 192_ru_pl_bg_en | 
| 193 | road - good - bike -  -  | 14 | 193_road_good_bike_ | 
| 194 | human - organism - plants -  -  | 14 | 194_human_organism_plants_ | 
| 195 | label_7 label_8 label_9 - label_8 label_9 - label_0 label_1 label_10 - label_1 label_10 - label_10 | 14 | 195_label_7 label_8 label_9_label_8 label_9_label_0 label_1 label_10_label_1 label_10 | 
| 196 | replace_ - append_ - replace_ replace_ - append_ append_ - replace_ replace_ replace_ | 13 | 196_replace__append__replace_ replace__append_ append_ | 
| 197 | brand - company - tm - color - item | 13 | 197_brand_company_tm_color | 
| 198 | pro - neutral - russian - support - attack | 13 | 198_pro_neutral_russian_support | 
| 199 | 18 19 20 - 19 20 - 23 - 17 18 19 - 21 | 13 | 199_18 19 20_19 20_23_17 18 19 | 
| 200 | crime - pers - time - book - day | 13 | 200_crime_pers_time_book | 
| 201 | neutral - positive - negative - positive negative - neutral positive | 13 | 201_neutral_positive_negative_positive negative | 
| 202 |  -  -  -  -  | 13 | 202____ | 
| 203 | chemical - disease - bio -  -  | 13 | 203_chemical_disease_bio_ | 
| 204 | angry - happy - sad - neutral - 60 | 12 | 204_angry_happy_sad_neutral | 
| 205 | organisation - task - country - location - product | 12 | 205_organisation_task_country_location | 
| 206 | iv - iii - vi - ii - unknown | 12 | 206_iv_iii_vi_ii | 
| 207 | neutral - risk -  -  -  | 12 | 207_neutral_risk__ | 
| 208 | container - id - type - person - number | 12 | 208_container_id_type_person | 
| 209 | target -  -  -  -  | 12 | 209_target___ | 
| 210 | pop - metal - country - song - rock | 12 | 210_pop_metal_country_song | 
| 211 | email - os - language - method - function | 12 | 211_email_os_language_method | 
| 212 | contradiction - non - entailment -  -  | 12 | 212_contradiction_non_entailment_ | 
| 213 | background - objective - method - result -  | 12 | 213_background_objective_method_result | 
| 214 | convertible - cab - type - series - martin | 12 | 214_convertible_cab_type_series | 
| 215 | public - smoking - drinking - ambiguous - non | 12 | 215_public_smoking_drinking_ambiguous | 
| 216 | rust -  -  -  -  | 12 | 216_rust___ | 
| 217 | persian - mr - man - flying - ghost | 12 | 217_persian_mr_man_flying | 
| 218 | quote - yes - middle - request -  | 12 | 218_quote_yes_middle_request | 
| 219 | text - mixed -  -  -  | 12 | 219_text_mixed__ | 
| 220 | punc - prep - digit - latin - conj | 12 | 220_punc_prep_digit_latin | 
| 221 | panda - air - mr - ticket - little | 12 | 221_panda_air_mr_ticket | 
| 222 |  -  -  -  -  | 12 | 222____ | 
| 223 | sym verb adj - intj noun num - verb adj adp - cconj det intj - aux cconj det | 12 | 223_sym verb adj_intj noun num_verb adj adp_cconj det intj | 
| 224 | healthy - tomato - plant - pepper - spot | 11 | 224_healthy_tomato_plant_pepper | 
| 225 | sony - lg - tv - galaxy - monitor | 11 | 225_sony_lg_tv_galaxy | 
| 226 | new - city - mid - location - south | 11 | 226_new_city_mid_location | 
| 227 | space -  -  -  -  | 11 | 227_space___ | 
| 228 | cloud - racing - motorcycle - boy - bus | 11 | 228_cloud_racing_motorcycle_boy | 
| 229 | punc - zero - pers - neg - reflex | 11 | 229_punc_zero_pers_neg | 
| 230 | energy - arts - high - systems - computer | 11 | 230_energy_arts_high_systems | 
| 231 | dis - ad - media - site - plant | 11 | 231_dis_ad_media_site | 
| 232 | world - tech - business - sports - female | 11 | 232_world_tech_business_sports | 
| 233 | sadness - anger - anger fear - joy - fear | 10 | 233_sadness_anger_anger fear_joy | 
| 234 | neg - adj - sym - propn - num | 10 | 234_neg_adj_sym_propn | 
| 235 | bulldog - cat - husky - pug - corgi | 9 | 235_bulldog_cat_husky_pug | 
| 236 |  -  -  -  -  | 8 | 236____ | 
| 237 | origin - quote - actor - opinion - language | 7 | 237_origin_quote_actor_opinion | 
| 238 | na - nb - nc - neu - ng | 7 | 238_na_nb_nc_neu | 
| 239 |  -  -  -  -  | 7 | 239____ | 
| 240 | ci - aa - joy - im - ip | 7 | 240_ci_aa_joy_im | 
| 241 |  -  -  -  -  | 6 | 241____ | 
| 242 | skill - email - address - grade - language | 6 | 242_skill_email_address_grade | 
| 243 | sexual - threat - christian - hate - male | 6 | 243_sexual_threat_christian_hate | 
| 244 | transmission - wind - tower - pole -  | 6 | 244_transmission_wind_tower_pole | 
| 245 | label_14 label_15 - label_13 label_14 label_15 - label_15 - label_12 label_13 label_14 - label_11 label_12 label_13 | 6 | 245_label_14 label_15_label_13 label_14 label_15_label_15_label_12 label_13 label_14 |
  
</details>

## Training hyperparameters

* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: True

## Framework versions

* Numpy: 1.22.4
* HDBSCAN: 0.8.29
* UMAP: 0.5.3
* Pandas: 1.5.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.29.2
* Numba: 0.56.4
* Plotly: 5.13.1
* Python: 3.10.11