File size: 24,314 Bytes
4dd3b94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# label_model_merged
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("davanstrien/label_model_merged")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 247
* Number of training documents: 14986
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | pre - roll - heavy - farm - health | 5 | -1_pre_roll_heavy_farm |
| 0 | label_1 label_2 - label_0 label_1 label_2 - label_1 - label_0 label_1 - label_2 | 1386 | 0_label_1 label_2_label_0 label_1 label_2_label_1_label_0 label_1 |
| 1 | label_1 label_2 label_3 - label_3 label_4 label_5 - label_4 label_5 - label_2 label_3 label_4 - label_5 | 1042 | 1_label_1 label_2 label_3_label_3 label_4 label_5_label_4 label_5_label_2 label_3 label_4 |
| 2 | negative positive - positive negative - negative - positive - target | 803 | 2_negative positive_positive negative_negative_positive |
| 3 | loc misc org - misc org - loc misc - misc - org loc | 652 | 3_loc misc org_misc org_loc misc_misc |
| 4 | neutral positive - neutral - positive negative - negative - positive | 509 | 4_neutral positive_neutral_positive negative_negative |
| 5 | label_0 - country - city - label_1 - label_0 label_1 | 357 | 5_label_0_country_city_label_1 |
| 6 | contradiction - entailment - neutral - - | 351 | 6_contradiction_entailment_neutral_ |
| 7 | label_0 - positive - - - | 335 | 7_label_0_positive__ |
| 8 | 99 - - - - | 327 | 8_99___ |
| 9 | label_1 label_2 label_3 - label_2 label_3 label_4 - label_3 label_4 - label_2 label_3 - label_4 | 302 | 9_label_1 label_2 label_3_label_2 label_3 label_4_label_3 label_4_label_2 label_3 |
| 10 | entailment - true - child - related - non | 257 | 10_entailment_true_child_related |
| 11 | terrier - snake - dog - bear - wolf | 245 | 11_terrier_snake_dog_bear |
| 12 | loc misc org - loc misc - misc org - misc - org loc | 240 | 12_loc misc org_loc misc_misc org_misc |
| 13 | label_5 label_6 label_7 - label_6 label_7 - label_4 label_5 label_6 - label_5 label_6 - label_7 | 231 | 13_label_5 label_6 label_7_label_6 label_7_label_4 label_5 label_6_label_5 label_6 |
| 14 | calendar - greeting - weather - transfer - calculator | 229 | 14_calendar_greeting_weather_transfer |
| 15 | label_1 label_2 label_3 - label_2 label_3 - label_3 - label_1 label_2 - label_0 label_1 label_2 | 226 | 15_label_1 label_2 label_3_label_2 label_3_label_3_label_1 label_2 |
| 16 | delete - unrelated - bad - related - rel | 207 | 16_delete_unrelated_bad_related |
| 17 | label_12 label_13 label_14 - label_11 label_12 label_13 - label_13 label_14 - label_12 label_13 - label_10 label_11 label_12 | 172 | 17_label_12 label_13 label_14_label_11 label_12 label_13_label_13 label_14_label_12 label_13 |
| 18 | loc org - org loc - org - loc - loc loc | 166 | 18_loc org_org loc_org_loc |
| 19 | left - right - stop - yes - zero | 130 | 19_left_right_stop_yes |
| 20 | label_6 label_60 label_61 - label_60 label_61 - label_60 label_61 label_62 - label_62 label_63 - label_59 label_6 label_60 | 123 | 20_label_6 label_60 label_61_label_60 label_61_label_60 label_61 label_62_label_62 label_63 |
| 21 | unrelated - - - - | 117 | 21_unrelated___ |
| 22 | forest - industrial - river - transport - disaster | 110 | 22_forest_industrial_river_transport |
| 23 | label_4 label_5 label_6 - label_5 label_6 - label_6 - label_1 label_2 label_3 - label_3 label_4 label_5 | 107 | 23_label_4 label_5 label_6_label_5 label_6_label_6_label_1 label_2 label_3 |
| 24 | question - quantity - - - | 106 | 24_question_quantity__ |
| 25 | healthy - leaf - rust - plant - mildew | 103 | 25_healthy_leaf_rust_plant |
| 26 | disease - blood - bio - healthy - sexual | 100 | 26_disease_blood_bio_healthy |
| 27 | work - group - corporation - person product - product | 92 | 27_work_group_corporation_person product |
| 28 | surprise anger - sadness surprise - fear joy - anger fear - joy love | 80 | 28_surprise anger_sadness surprise_fear joy_anger fear |
| 29 | duplicate - common - non - - | 78 | 29_duplicate_common_non_ |
| 30 | steak - hamburger - restaurant - pizza - joint | 76 | 30_steak_hamburger_restaurant_pizza |
| 31 | room - service - transport - product - forest | 74 | 31_room_service_transport_product |
| 32 | dis - - - - | 74 | 32_dis___ |
| 33 | - - - - | 73 | 33____ |
| 34 | loc org - org - date - loc - set | 70 | 34_loc org_org_date_loc |
| 35 | label_17 label_18 label_19 - label_18 label_19 - label_18 label_19 label_2 - label_19 label_2 - label_16 label_17 label_18 | 70 | 35_label_17 label_18 label_19_label_18 label_19_label_18 label_19 label_2_label_19 label_2 |
| 36 | 03 - 02 - second - - | 65 | 36_03_02_second_ |
| 37 | anger fear - joy love - surprise - joy - love | 65 | 37_anger fear_joy love_surprise_joy |
| 38 | real - true - image - news - | 64 | 38_real_true_image_news |
| 39 | - - - - | 63 | 39____ |
| 40 | pos - neg - neu - - | 62 | 40_pos_neg_neu_ |
| 41 | 45 - 30 - 55 - 35 - 10 | 61 | 41_45_30_55_35 |
| 42 | ge - wifi - na - alpha - fan | 61 | 42_ge_wifi_na_alpha |
| 43 | label_1 label_10 label_11 - label_10 label_11 - label_8 label_9 label_0 - label_9 label_0 label_1 - label_9 label_0 | 61 | 43_label_1 label_10 label_11_label_10 label_11_label_8 label_9 label_0_label_9 label_0 label_1 |
| 44 | event - group - corporation - person product - product | 61 | 44_event_group_corporation_person product |
| 45 | label_19 label_2 label_20 - label_2 label_20 - label_20 - label_18 label_19 label_2 - label_18 label_19 | 60 | 45_label_19 label_2 label_20_label_2 label_20_label_20_label_18 label_19 label_2 |
| 46 | fear happy - sad - happy - disgust fear - angry | 58 | 46_fear happy_sad_happy_disgust fear |
| 47 | battery - volume - chinese - juice - socks | 58 | 47_battery_volume_chinese_juice |
| 48 | prep - nn - bio - cc - pro | 56 | 48_prep_nn_bio_cc |
| 49 | good - poor - ok - great - bad | 56 | 49_good_poor_ok_great |
| 50 | date - city - fur - day - ar | 54 | 50_date_city_fur_day |
| 51 | 15 - 18 19 20 - 19 20 - 17 18 19 - 18 19 | 54 | 51_15_18 19 20_19 20_17 18 19 |
| 52 | menu - price - num - - | 52 | 52_menu_price_num_ |
| 53 | common - fat - loose - small - sugar | 52 | 53_common_fat_loose_small |
| 54 | append_ - replace_ - append_ append_ - replace_ replace_ - append_ append_ append_ | 49 | 54_append__replace__append_ append__replace_ replace_ |
| 55 | append_ - replace_ - append_ append_ - replace_ replace_ - append_ append_ append_ | 48 | 55_append__replace__append_ append__replace_ replace_ |
| 56 | animals - flying - tech - dance - tiger | 48 | 56_animals_flying_tech_dance |
| 57 | self - question - neutral - yes - greeting | 47 | 57_self_question_neutral_yes |
| 58 | mt - cv - tr - tm - drug | 47 | 58_mt_cv_tr_tm |
| 59 | organization person - location organization - organization - location - person | 46 | 59_organization person_location organization_organization_location |
| 60 | - - - - | 45 | 60____ |
| 61 | joy - anger - sadness - sad - happy | 44 | 61_joy_anger_sadness_sad |
| 62 | daisy - tulip - rose - - | 43 | 62_daisy_tulip_rose_ |
| 63 | positive - negative - neutral - neutral positive - positive negative | 42 | 63_positive_negative_neutral_neutral positive |
| 64 | windows - pm - 21 - office - 20 | 42 | 64_windows_pm_21_office |
| 65 | label_14 label_15 - label_13 label_14 label_15 - label_15 - label_12 label_13 label_14 - label_11 label_12 label_13 | 42 | 65_label_14 label_15_label_13 label_14 label_15_label_15_label_12 label_13 label_14 |
| 66 | position - statement - lead - request - study | 42 | 66_position_statement_lead_request |
| 67 | business - news - entertainment - tech - sport | 41 | 67_business_news_entertainment_tech |
| 68 | hate - speech - language - reporting - non | 41 | 68_hate_speech_language_reporting |
| 69 | bd - nan - id - bg - | 41 | 69_bd_nan_id_bg |
| 70 | cream - burger - carrot - ice cream - salad | 41 | 70_cream_burger_carrot_ice cream |
| 71 | human - machine - ai - artificial - art | 40 | 71_human_machine_ai_artificial |
| 72 | open - high - tie - abstract - button | 40 | 72_open_high_tie_abstract |
| 73 | label_23 label_24 label_25 - label_24 label_25 - label_22 label_23 label_24 - label_23 label_24 - label_21 label_22 label_23 | 40 | 73_label_23 label_24 label_25_label_24 label_25_label_22 label_23 label_24_label_23 label_24 |
| 74 | label_8 label_9 label_0 - label_9 label_0 label_1 - label_9 label_0 - label_7 label_8 label_9 - label_8 label_9 | 39 | 74_label_8 label_9 label_0_label_9 label_0 label_1_label_9 label_0_label_7 label_8 label_9 |
| 75 | cat - dog - cats - dogs - drinking | 39 | 75_cat_dog_cats_dogs |
| 76 | org org - loc loc - org - misc - loc | 38 | 76_org org_loc loc_org_misc |
| 77 | airplane - deer - bird - ship - frog | 38 | 77_airplane_deer_bird_ship |
| 78 | label_32 label_33 label_34 - label_33 label_34 - label_31 label_32 label_33 - label_32 label_33 - label_30 label_31 label_32 | 38 | 78_label_32 label_33 label_34_label_33 label_34_label_31 label_32 label_33_label_32 label_33 |
| 79 | true - - - - | 38 | 79_true___ |
| 80 | family - sports - music - related - health | 38 | 80_family_sports_music_related |
| 81 | star - positive - negative - amazon - negative positive | 37 | 81_star_positive_negative_amazon |
| 82 | hospital - unknown - description - material - pad | 37 | 82_hospital_unknown_description_material |
| 83 | threat - hate - reward - quality - content | 36 | 83_threat_hate_reward_quality |
| 84 | music - speech - instrument - engine - wind | 35 | 84_music_speech_instrument_engine |
| 85 | closure - annual - statement - issues - reward | 35 | 85_closure_annual_statement_issues |
| 86 | adp - aux - sconj - pron - noun | 35 | 86_adp_aux_sconj_pron |
| 87 | experience - location - skill - address - result | 35 | 87_experience_location_skill_address |
| 88 | - - - - | 34 | 88____ |
| 89 | test - train - risk - non - high | 34 | 89_test_train_risk_non |
| 90 | samoyed - corgi - husky - golden retriever - golden | 34 | 90_samoyed_corgi_husky_golden retriever |
| 91 | unk - zero - 10 - 12 13 14 - 13 14 15 | 33 | 91_unk_zero_10_12 13 14 |
| 92 | non - neutral - ok - lead - | 33 | 92_non_neutral_ok_lead |
| 93 | normal - covid - virus - regular - disorder | 33 | 93_normal_covid_virus_regular |
| 94 | test - help - app - risk - joke | 32 | 94_test_help_app_risk |
| 95 | replace_ - append_ - replace_ replace_ - append_ append_ - replace_ replace_ replace_ | 32 | 95_replace__append__replace_ replace__append_ append_ |
| 96 | disease - issues - pressure - drug - blood | 31 | 96_disease_issues_pressure_drug |
| 97 | women - casual - sexual - individual - use | 31 | 97_women_casual_sexual_individual |
| 98 | address - balance - code - second - currency | 30 | 98_address_balance_code_second |
| 99 | hate - non - neutral - - | 30 | 99_hate_non_neutral_ |
| 100 | normal - cell - large - clean - healthy | 29 | 100_normal_cell_large_clean |
| 101 | neutral - se - - - | 29 | 101_neutral_se__ |
| 102 | male - female - hair - skin - men | 29 | 102_male_female_hair_skin |
| 103 | title - page - section - abstract - table | 28 | 103_title_page_section_abstract |
| 104 | number - gender - case - person - fin | 28 | 104_number_gender_case_person |
| 105 | man - bird - flower - long - double | 28 | 105_man_bird_flower_long |
| 106 | contradiction - entailment - neutral - - | 28 | 106_contradiction_entailment_neutral_ |
| 107 | non - - - - | 27 | 107_non___ |
| 108 | tim - fac - org - pro - loc | 27 | 108_tim_fac_org_pro |
| 109 | lincoln - jaguar - visual - audio - sony | 27 | 109_lincoln_jaguar_visual_audio |
| 110 | statement - info - check - ad - news | 27 | 110_statement_info_check_ad |
| 111 | ben - ext - root - exp - loc | 26 | 111_ben_ext_root_exp |
| 112 | yes - - - - | 26 | 112_yes___ |
| 113 | queen - jack - king - south - war | 26 | 113_queen_jack_king_south |
| 114 | - - - - | 26 | 114____ |
| 115 | ft - cardinal - act - loc - loc loc | 25 | 115_ft_cardinal_act_loc |
| 116 | bio - chemical - food - - | 25 | 116_bio_chemical_food_ |
| 117 | ft - cardinal - act - loc - loc misc org | 25 | 117_ft_cardinal_act_loc |
| 118 | metric - task - - - | 25 | 118_metric_task__ |
| 119 | email - age - patient - zip - organization | 25 | 119_email_age_patient_zip |
| 120 | ent - im - ru - mat - art | 25 | 120_ent_im_ru_mat |
| 121 | ex - pt - galaxy - moon - 8888 | 24 | 121_ex_pt_galaxy_moon |
| 122 | - - - - | 24 | 122____ |
| 123 | neu - sad - dis - joy - | 24 | 123_neu_sad_dis_joy |
| 124 | label_122 - label_121 - label_120 - label_123 - label_119 | 24 | 124_label_122_label_121_label_120_label_123 |
| 125 | mixed - positive - negative - neutral positive - neutral | 24 | 125_mixed_positive_negative_neutral positive |
| 126 | date event - percent person - quantity - money - percent | 24 | 126_date event_percent person_quantity_money |
| 127 | fear joy - sadness surprise - surprise - joy - sadness | 24 | 127_fear joy_sadness surprise_surprise_joy |
| 128 | disgust - sadness surprise - joy love - surprise - joy | 24 | 128_disgust_sadness surprise_joy love_surprise |
| 129 | magnet - motor - hello - undefined - start | 24 | 129_magnet_motor_hello_undefined |
| 130 | loc loc - loc - pers - hi - en | 24 | 130_loc loc_loc_pers_hi |
| 131 | event - pers - fac - pro - loc org | 24 | 131_event_pers_fac_pro |
| 132 | disorder - body - patient - age - disease | 23 | 132_disorder_body_patient_age |
| 133 | happiness - fear - anger disgust - disgust - sadness | 23 | 133_happiness_fear_anger disgust_disgust |
| 134 | control - la - social - sin - civil | 23 | 134_control_la_social_sin |
| 135 | label_98 label_99 - label_97 label_98 label_99 - label_97 label_98 - label_95 label_96 - label_96 label_97 label_98 | 23 | 135_label_98 label_99_label_97 label_98 label_99_label_97 label_98_label_95 label_96 |
| 136 | greek - chinese - italian - japanese - dutch | 23 | 136_greek_chinese_italian_japanese |
| 137 | clean - - - - | 23 | 137_clean___ |
| 138 | protein - chemical - cell - - | 22 | 138_protein_chemical_cell_ |
| 139 | treatment - disease - location organization - organization person - organization | 22 | 139_treatment_disease_location organization_organization person |
| 140 | institution - tools - org - loc - organization | 22 | 140_institution_tools_org_loc |
| 141 | statement - question - - - | 22 | 141_statement_question__ |
| 142 | period - question - noun - number - | 21 | 142_period_question_noun_number |
| 143 | regular - - - - | 21 | 143_regular___ |
| 144 | rna - - - - | 21 | 144_rna___ |
| 145 | rs - - - - | 21 | 145_rs___ |
| 146 | address - id - job - email - country | 21 | 146_address_id_job_email |
| 147 | neg - neu - good - - | 21 | 147_neg_neu_good_ |
| 148 | label_122 label_123 - label_123 - label_122 - label_121 - label_120 | 20 | 148_label_122 label_123_label_123_label_122_label_121 |
| 149 | drink - tea - wine - coffee - soft | 20 | 149_drink_tea_wine_coffee |
| 150 | miscellaneous - organization - percent - money - percent person | 20 | 150_miscellaneous_organization_percent_money |
| 151 | description - invoice - zip - state - city | 20 | 151_description_invoice_zip_state |
| 152 | sports - tech - business - sport - | 20 | 152_sports_tech_business_sport |
| 153 | ok - vin - rl - ft - year | 20 | 153_ok_vin_rl_ft |
| 154 | healthy - - - - | 20 | 154_healthy___ |
| 155 | association - event - ticket - disaster - map | 20 | 155_association_event_ticket_disaster |
| 156 | 10 11 - 10 11 12 - 11 12 - 11 - 11 12 13 | 19 | 156_10 11_10 11 12_11 12_11 |
| 157 | noun num pron - num pron propn - num pron - pron propn punct - pron propn | 19 | 157_noun num pron_num pron propn_num pron_pron propn punct |
| 158 | cell - organ - organism - multi - tissue | 18 | 158_cell_organ_organism_multi |
| 159 | 02 - ent - express - act - delete | 18 | 159_02_ent_express_act |
| 160 | sym verb adj - verb adj adp - intj noun num - det intj noun - adj adp adv | 18 | 160_sym verb adj_verb adj adp_intj noun num_det intj noun |
| 161 | 12 - - - - | 18 | 161_12___ |
| 162 | org org - org - drug - - | 18 | 162_org org_org_drug_ |
| 163 | short - long - sl - ac - pad | 18 | 163_short_long_sl_ac |
| 164 | plastic - paper - glass - metal - sheet | 18 | 164_plastic_paper_glass_metal |
| 165 | ii - blank - iii - vi - et | 17 | 165_ii_blank_iii_vi |
| 166 | normal - virus - desert - smoke - pressure | 17 | 166_normal_virus_desert_smoke |
| 167 | skill - skills - - - | 17 | 167_skill_skills__ |
| 168 | protein - rna - cell - line - type | 17 | 168_protein_rna_cell_line |
| 169 | korean - russian - dutch - french - thai | 17 | 169_korean_russian_dutch_french |
| 170 | rainbow - rain - snow - color - green | 17 | 170_rainbow_rain_snow_color |
| 171 | company - role - institution - skill - loc org | 16 | 171_company_role_institution_skill |
| 172 | exp - pp - intj - punc - prep | 16 | 172_exp_pp_intj_punc |
| 173 | key - menu - - - | 16 | 173_key_menu__ |
| 174 | adult - young - child - male - female | 16 | 174_adult_young_child_male |
| 175 | normal - - - - | 16 | 175_normal___ |
| 176 | mask - bright - sharp - head - normal | 16 | 176_mask_bright_sharp_head |
| 177 | anger disgust fear - anger disgust - disgust fear - disgust - surprise anger | 16 | 177_anger disgust fear_anger disgust_disgust fear_disgust |
| 178 | - - - - | 16 | 178____ |
| 179 | objective - non - neutral - - | 16 | 179_objective_non_neutral_ |
| 180 | cr - sd - db - - | 16 | 180_cr_sd_db_ |
| 181 | - - - - | 16 | 181____ |
| 182 | label_29 label_3 label_30 - label_27 label_28 label_29 - label_26 label_27 label_28 - label_28 label_29 label_3 - label_29 label_3 | 16 | 182_label_29 label_3 label_30_label_27 label_28 label_29_label_26 label_27 label_28_label_28 label_29 label_3 |
| 183 | test - - - - | 15 | 183_test___ |
| 184 | good - bad - non - - | 15 | 184_good_bad_non_ |
| 185 | local - por - art - da - em | 15 | 185_local_por_art_da |
| 186 | label_122 label_123 - label_97 label_98 label_99 - label_97 label_98 - label_96 label_97 label_98 - label_98 label_99 | 15 | 186_label_122 label_123_label_97 label_98 label_99_label_97 label_98_label_96 label_97 label_98 |
| 187 | prod - loc - evt - misc - org org | 15 | 187_prod_loc_evt_misc |
| 188 | invoice - email - form - letter - report | 15 | 188_invoice_email_form_letter |
| 189 | end - head - cross - - | 15 | 189_end_head_cross_ |
| 190 | target - instrument - opinion - question - price | 15 | 190_target_instrument_opinion_question |
| 191 | unrelated - support - - - | 15 | 191_unrelated_support__ |
| 192 | ru - pl - bg - en - es | 14 | 192_ru_pl_bg_en |
| 193 | road - good - bike - - | 14 | 193_road_good_bike_ |
| 194 | human - organism - plants - - | 14 | 194_human_organism_plants_ |
| 195 | label_7 label_8 label_9 - label_8 label_9 - label_0 label_1 label_10 - label_1 label_10 - label_10 | 14 | 195_label_7 label_8 label_9_label_8 label_9_label_0 label_1 label_10_label_1 label_10 |
| 196 | replace_ - append_ - replace_ replace_ - append_ append_ - replace_ replace_ replace_ | 13 | 196_replace__append__replace_ replace__append_ append_ |
| 197 | brand - company - tm - color - item | 13 | 197_brand_company_tm_color |
| 198 | pro - neutral - russian - support - attack | 13 | 198_pro_neutral_russian_support |
| 199 | 18 19 20 - 19 20 - 23 - 17 18 19 - 21 | 13 | 199_18 19 20_19 20_23_17 18 19 |
| 200 | crime - pers - time - book - day | 13 | 200_crime_pers_time_book |
| 201 | neutral - positive - negative - positive negative - neutral positive | 13 | 201_neutral_positive_negative_positive negative |
| 202 | - - - - | 13 | 202____ |
| 203 | chemical - disease - bio - - | 13 | 203_chemical_disease_bio_ |
| 204 | angry - happy - sad - neutral - 60 | 12 | 204_angry_happy_sad_neutral |
| 205 | organisation - task - country - location - product | 12 | 205_organisation_task_country_location |
| 206 | iv - iii - vi - ii - unknown | 12 | 206_iv_iii_vi_ii |
| 207 | neutral - risk - - - | 12 | 207_neutral_risk__ |
| 208 | container - id - type - person - number | 12 | 208_container_id_type_person |
| 209 | target - - - - | 12 | 209_target___ |
| 210 | pop - metal - country - song - rock | 12 | 210_pop_metal_country_song |
| 211 | email - os - language - method - function | 12 | 211_email_os_language_method |
| 212 | contradiction - non - entailment - - | 12 | 212_contradiction_non_entailment_ |
| 213 | background - objective - method - result - | 12 | 213_background_objective_method_result |
| 214 | convertible - cab - type - series - martin | 12 | 214_convertible_cab_type_series |
| 215 | public - smoking - drinking - ambiguous - non | 12 | 215_public_smoking_drinking_ambiguous |
| 216 | rust - - - - | 12 | 216_rust___ |
| 217 | persian - mr - man - flying - ghost | 12 | 217_persian_mr_man_flying |
| 218 | quote - yes - middle - request - | 12 | 218_quote_yes_middle_request |
| 219 | text - mixed - - - | 12 | 219_text_mixed__ |
| 220 | punc - prep - digit - latin - conj | 12 | 220_punc_prep_digit_latin |
| 221 | panda - air - mr - ticket - little | 12 | 221_panda_air_mr_ticket |
| 222 | - - - - | 12 | 222____ |
| 223 | sym verb adj - intj noun num - verb adj adp - cconj det intj - aux cconj det | 12 | 223_sym verb adj_intj noun num_verb adj adp_cconj det intj |
| 224 | healthy - tomato - plant - pepper - spot | 11 | 224_healthy_tomato_plant_pepper |
| 225 | sony - lg - tv - galaxy - monitor | 11 | 225_sony_lg_tv_galaxy |
| 226 | new - city - mid - location - south | 11 | 226_new_city_mid_location |
| 227 | space - - - - | 11 | 227_space___ |
| 228 | cloud - racing - motorcycle - boy - bus | 11 | 228_cloud_racing_motorcycle_boy |
| 229 | punc - zero - pers - neg - reflex | 11 | 229_punc_zero_pers_neg |
| 230 | energy - arts - high - systems - computer | 11 | 230_energy_arts_high_systems |
| 231 | dis - ad - media - site - plant | 11 | 231_dis_ad_media_site |
| 232 | world - tech - business - sports - female | 11 | 232_world_tech_business_sports |
| 233 | sadness - anger - anger fear - joy - fear | 10 | 233_sadness_anger_anger fear_joy |
| 234 | neg - adj - sym - propn - num | 10 | 234_neg_adj_sym_propn |
| 235 | bulldog - cat - husky - pug - corgi | 9 | 235_bulldog_cat_husky_pug |
| 236 | - - - - | 8 | 236____ |
| 237 | origin - quote - actor - opinion - language | 7 | 237_origin_quote_actor_opinion |
| 238 | na - nb - nc - neu - ng | 7 | 238_na_nb_nc_neu |
| 239 | - - - - | 7 | 239____ |
| 240 | ci - aa - joy - im - ip | 7 | 240_ci_aa_joy_im |
| 241 | - - - - | 6 | 241____ |
| 242 | skill - email - address - grade - language | 6 | 242_skill_email_address_grade |
| 243 | sexual - threat - christian - hate - male | 6 | 243_sexual_threat_christian_hate |
| 244 | transmission - wind - tower - pole - | 6 | 244_transmission_wind_tower_pole |
| 245 | label_14 label_15 - label_13 label_14 label_15 - label_15 - label_12 label_13 label_14 - label_11 label_12 label_13 | 6 | 245_label_14 label_15_label_13 label_14 label_15_label_15_label_12 label_13 label_14 |
</details>
## Training hyperparameters
* calculate_probabilities: False
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: True
## Framework versions
* Numpy: 1.22.4
* HDBSCAN: 0.8.29
* UMAP: 0.5.3
* Pandas: 1.5.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.29.2
* Numba: 0.56.4
* Plotly: 5.13.1
* Python: 3.10.11
|