metadata
license: mit
base_model: naver-clova-ix/donut-base
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- bleu
- wer
model-index:
- name: donut-base-sroie-v3
results: []
donut-base-sroie-v3
This model is a fine-tuned version of naver-clova-ix/donut-base on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.7091
- Bleu: 0.0045
- Precisions: [0.32051282051282054, 0.10617283950617284, 0.043859649122807015, 0.02867383512544803]
- Brevity Penalty: 0.0555
- Length Ratio: 0.2570
- Translation Length: 468
- Reference Length: 1821
- Cer: 0.8657
- Wer: 0.9978
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer |
---|---|---|---|---|---|---|---|---|---|---|---|
No log | 0.99 | 62 | 1.7048 | 0.0026 | [0.3287981859410431, 0.09259259259259259, 0.025396825396825397, 0.015873015873015872] | 0.0438 | 0.2422 | 441 | 1821 | 0.8729 | 1.0 |
0.6536 | 2.0 | 125 | 1.7425 | 0.0035 | [0.32051282051282054, 0.0962962962962963, 0.029239766081871343, 0.017921146953405017] | 0.0555 | 0.2570 | 468 | 1821 | 0.8701 | 0.9986 |
0.6536 | 2.99 | 187 | 1.6949 | 0.0038 | [0.3148936170212766, 0.09582309582309582, 0.03197674418604651, 0.021352313167259787] | 0.0564 | 0.2581 | 470 | 1821 | 0.8670 | 0.9978 |
0.6585 | 3.97 | 248 | 1.7091 | 0.0045 | [0.32051282051282054, 0.10617283950617284, 0.043859649122807015, 0.02867383512544803] | 0.0555 | 0.2570 | 468 | 1821 | 0.8657 | 0.9978 |
Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.1.0
- Datasets 2.18.0
- Tokenizers 0.15.2