--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer datasets: - imagefolder metrics: - bleu - wer model-index: - name: donut-base-sroie-v3 results: [] --- # donut-base-sroie-v3 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.7091 - Bleu: 0.0045 - Precisions: [0.32051282051282054, 0.10617283950617284, 0.043859649122807015, 0.02867383512544803] - Brevity Penalty: 0.0555 - Length Ratio: 0.2570 - Translation Length: 468 - Reference Length: 1821 - Cer: 0.8657 - Wer: 0.9978 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | No log | 0.99 | 62 | 1.7048 | 0.0026 | [0.3287981859410431, 0.09259259259259259, 0.025396825396825397, 0.015873015873015872] | 0.0438 | 0.2422 | 441 | 1821 | 0.8729 | 1.0 | | 0.6536 | 2.0 | 125 | 1.7425 | 0.0035 | [0.32051282051282054, 0.0962962962962963, 0.029239766081871343, 0.017921146953405017] | 0.0555 | 0.2570 | 468 | 1821 | 0.8701 | 0.9986 | | 0.6536 | 2.99 | 187 | 1.6949 | 0.0038 | [0.3148936170212766, 0.09582309582309582, 0.03197674418604651, 0.021352313167259787] | 0.0564 | 0.2581 | 470 | 1821 | 0.8670 | 0.9978 | | 0.6585 | 3.97 | 248 | 1.7091 | 0.0045 | [0.32051282051282054, 0.10617283950617284, 0.043859649122807015, 0.02867383512544803] | 0.0555 | 0.2570 | 468 | 1821 | 0.8657 | 0.9978 | ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.1.0 - Datasets 2.18.0 - Tokenizers 0.15.2