--- license: mit base_model: naver-clova-ix/donut-base tags: - generated_from_trainer metrics: - bleu - wer model-index: - name: donut_experiment_bayesian_trial_13 results: [] --- # donut_experiment_bayesian_trial_13 This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5500 - Bleu: 0.0682 - Precisions: [0.8219461697722568, 0.755868544600939, 0.7073170731707317, 0.6474358974358975] - Brevity Penalty: 0.0934 - Length Ratio: 0.2967 - Translation Length: 483 - Reference Length: 1628 - Cer: 0.7531 - Wer: 0.8285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.0814226870239416e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | Cer | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:|:------:|:------:| | 0.0455 | 1.0 | 253 | 0.5262 | 0.0660 | [0.8166666666666667, 0.7446808510638298, 0.6939890710382514, 0.6407766990291263] | 0.0915 | 0.2948 | 480 | 1628 | 0.7601 | 0.8316 | | 0.0276 | 2.0 | 506 | 0.5500 | 0.0682 | [0.8219461697722568, 0.755868544600939, 0.7073170731707317, 0.6474358974358975] | 0.0934 | 0.2967 | 483 | 1628 | 0.7531 | 0.8285 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.0 - Datasets 2.18.0 - Tokenizers 0.19.1