--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy widget: - text: Check your vertical on the main support; it looks a little off. I'd also like to see how it looks with a bit of the sky cropped from the photo base_model: distilbert-base-uncased model-index: - name: aesthetic_attribute_classifier results: [] --- # aesthetic_attribute_classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the [PCCD dataset](https://github.com/ivclab/DeepPhotoCritic-ICCV17). It achieves the following results on the evaluation set: - Loss: 0.3976 - Precision: {'precision': 0.877129341279301} - Recall: {'recall': 0.8751381215469614} - F1: {'f1': 0.875529982855803} - Accuracy: {'accuracy': 0.8751381215469614} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------------------------:|:------------------------------:|:--------------------------:|:--------------------------------:| | 0.452 | 1.0 | 1528 | 0.4109 | {'precision': 0.8632779077963935} | {'recall': 0.8615101289134438} | {'f1': 0.8618616182904953} | {'accuracy': 0.8615101289134438} | | 0.3099 | 2.0 | 3056 | 0.3976 | {'precision': 0.877129341279301} | {'recall': 0.8751381215469614} | {'f1': 0.875529982855803} | {'accuracy': 0.8751381215469614} | | 0.227 | 3.0 | 4584 | 0.4320 | {'precision': 0.876211408446225} | {'recall': 0.874401473296501} | {'f1': 0.8747427955387239} | {'accuracy': 0.874401473296501} | | 0.1645 | 4.0 | 6112 | 0.4840 | {'precision': 0.8724641667216837} | {'recall': 0.8714548802946593} | {'f1': 0.8714577820909117} | {'accuracy': 0.8714548802946593} | | 0.1141 | 5.0 | 7640 | 0.5083 | {'precision': 0.8755445355051571} | {'recall': 0.8747697974217311} | {'f1': 0.8748766125899489} | {'accuracy': 0.8747697974217311} | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0