File size: 1,265 Bytes
65e71e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
from typing import Dict, List, Any
from PIL import Image
from fcnutr import FCNutr
import os
import tensorflow as tf
class PreTrainedPipeline():
def __init__(self, path=""):
crop_size = (224, 224)
self.nutr_names = ('energy', 'fat', 'protein', 'carbs')
self.model = FCNutr(self.nutr_names, crop_size, 4096, 3, False)
self.model.compile()
self.model(tf.zeros((1, crop_size[0], crop_size[1], 3)))
self.model.load_weights(os.path.join(path, "fcnutr.h5"))
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
image = tf.keras.preprocessing.image.img_to_array(inputs)
height = tf.shape(image)[0]
width = tf.shape(image)[1]
if width > height:
image = tf.image.resize(image, (self.img_size, int(float(self.img_size * width) / float(height))))
else:
image = tf.image.resize(image, (int(float(self.img_size * height) / float(width)), self.img_size))
image = tf.keras.applications.inception_v3.preprocess_input(image)
image = tf.keras.layers.CenterCrop(*self.crop_size)(image)
prediction = self.model(image[tf.newaxis, :])
return {name: float(prediction[name].numpy()[0, 0]) for name in self.nutr_names}
|