File size: 3,991 Bytes
290a226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eb9360
 
 
 
 
 
290a226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eb9360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290a226
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: peft
tags:
- generated_from_trainer
base_model: d0rj/rut5-base-summ
metrics:
- rouge
model-index:
- name: summary_about_me
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# summary_about_me

This model is a fine-tuned version of [d0rj/rut5-base-summ](https://huggingface.co/d0rj/rut5-base-summ) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9918
- Rouge1: 0.9677
- Rouge2: 0.8966
- Rougel: 0.9677
- Rougelsum: 0.9677
- Gen Len: 79.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 50   | 1.3458          | 0.0    | 0.0    | 0.0    | 0.0       | 20.0    |
| No log        | 2.0   | 100  | 1.3283          | 0.0    | 0.0    | 0.0    | 0.0       | 20.0    |
| No log        | 3.0   | 150  | 1.3000          | 0.0    | 0.0    | 0.0    | 0.0       | 17.0    |
| No log        | 4.0   | 200  | 1.2688          | 0.0    | 0.0    | 0.0    | 0.0       | 17.0    |
| No log        | 5.0   | 250  | 1.2354          | 0.0    | 0.0    | 0.0    | 0.0       | 17.0    |
| No log        | 6.0   | 300  | 1.2041          | 0.0    | 0.0    | 0.0    | 0.0       | 20.0    |
| No log        | 7.0   | 350  | 1.1791          | 0.0    | 0.0    | 0.0    | 0.0       | 10.0    |
| No log        | 8.0   | 400  | 1.1403          | 0.0    | 0.0    | 0.0    | 0.0       | 17.0    |
| No log        | 9.0   | 450  | 1.1153          | 0.0    | 0.0    | 0.0    | 0.0       | 17.0    |
| 2.0999        | 10.0  | 500  | 1.0938          | 0.0    | 0.0    | 0.0    | 0.0       | 17.0    |
| 2.0999        | 11.0  | 550  | 1.0813          | 0.0    | 0.0    | 0.0    | 0.0       | 17.0    |
| 2.0999        | 12.0  | 600  | 1.0607          | 0.1176 | 0.0    | 0.1176 | 0.1176    | 35.0    |
| 2.0999        | 13.0  | 650  | 1.0508          | 0.9333 | 0.8571 | 0.9333 | 0.9333    | 44.0    |
| 2.0999        | 14.0  | 700  | 1.0386          | 0.9333 | 0.8571 | 0.9333 | 0.9333    | 44.0    |
| 2.0999        | 15.0  | 750  | 1.0293          | 0.9333 | 0.8571 | 0.9333 | 0.9333    | 44.0    |
| 2.0999        | 16.0  | 800  | 1.0210          | 0.9333 | 0.8571 | 0.9333 | 0.9333    | 44.0    |
| 2.0999        | 17.0  | 850  | 1.0151          | 0.9333 | 0.8571 | 0.9333 | 0.9333    | 44.0    |
| 2.0999        | 18.0  | 900  | 1.0084          | 0.0    | 0.0    | 0.0    | 0.0       | 10.0    |
| 2.0999        | 19.0  | 950  | 1.0039          | 0.9677 | 0.8966 | 0.9677 | 0.9677    | 79.0    |
| 1.8806        | 20.0  | 1000 | 0.9999          | 0.9677 | 0.8966 | 0.9677 | 0.9677    | 79.0    |
| 1.8806        | 21.0  | 1050 | 0.9963          | 0.9677 | 0.8966 | 0.9677 | 0.9677    | 79.0    |
| 1.8806        | 22.0  | 1100 | 0.9943          | 0.9677 | 0.8966 | 0.9677 | 0.9677    | 79.0    |
| 1.8806        | 23.0  | 1150 | 0.9932          | 0.9677 | 0.8966 | 0.9677 | 0.9677    | 79.0    |
| 1.8806        | 24.0  | 1200 | 0.9925          | 0.9677 | 0.8966 | 0.9677 | 0.9677    | 79.0    |
| 1.8806        | 25.0  | 1250 | 0.9918          | 0.9677 | 0.8966 | 0.9677 | 0.9677    | 79.0    |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1