davidberenstein1957 HF staff commited on
Commit
f97a403
1 Parent(s): c75ede3

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TaylorAI/bge-micro-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: This sentence is neutral
14
+ - text: This sentence is positive
15
+ - text: This sentence is positive
16
+ - text: This sentence is neutral
17
+ - text: This sentence is negative
18
+ inference: true
19
+ ---
20
+
21
+ # SetFit with TaylorAI/bge-micro-v2
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2)
35
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
+ - **Maximum Sequence Length:** 512 tokens
37
+ - **Number of Classes:** 3 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:------|:----------------------------------------------------------------------------------------------------------------------|
51
+ | 0 | <ul><li>'This sentence is positive'</li><li>'This sentence is positive'</li><li>'This sentence is positive'</li></ul> |
52
+ | 1 | <ul><li>'This sentence is negative'</li><li>'This sentence is negative'</li><li>'This sentence is negative'</li></ul> |
53
+ | 2 | <ul><li>'This sentence is neutral'</li><li>'This sentence is neutral'</li><li>'This sentence is neutral'</li></ul> |
54
+
55
+ ## Uses
56
+
57
+ ### Direct Use for Inference
58
+
59
+ First install the SetFit library:
60
+
61
+ ```bash
62
+ pip install setfit
63
+ ```
64
+
65
+ Then you can load this model and run inference.
66
+
67
+ ```python
68
+ from setfit import SetFitModel
69
+
70
+ # Download from the 🤗 Hub
71
+ model = SetFitModel.from_pretrained("davidberenstein1957/text_classification_model_zero_shot")
72
+ # Run inference
73
+ preds = model("This sentence is neutral")
74
+ ```
75
+
76
+ <!--
77
+ ### Downstream Use
78
+
79
+ *List how someone could finetune this model on their own dataset.*
80
+ -->
81
+
82
+ <!--
83
+ ### Out-of-Scope Use
84
+
85
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
86
+ -->
87
+
88
+ <!--
89
+ ## Bias, Risks and Limitations
90
+
91
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
92
+ -->
93
+
94
+ <!--
95
+ ### Recommendations
96
+
97
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
98
+ -->
99
+
100
+ ## Training Details
101
+
102
+ ### Training Set Metrics
103
+ | Training set | Min | Median | Max |
104
+ |:-------------|:----|:-------|:----|
105
+ | Word count | 4 | 4.0 | 4 |
106
+
107
+ | Label | Training Sample Count |
108
+ |:------|:----------------------|
109
+ | 0 | 8 |
110
+ | 1 | 8 |
111
+ | 2 | 8 |
112
+
113
+ ### Training Hyperparameters
114
+ - batch_size: (16, 2)
115
+ - num_epochs: (1, 16)
116
+ - max_steps: -1
117
+ - sampling_strategy: oversampling
118
+ - body_learning_rate: (2e-05, 1e-05)
119
+ - head_learning_rate: 0.01
120
+ - loss: CosineSimilarityLoss
121
+ - distance_metric: cosine_distance
122
+ - margin: 0.25
123
+ - end_to_end: False
124
+ - use_amp: False
125
+ - warmup_proportion: 0.1
126
+ - l2_weight: 0.01
127
+ - seed: 42
128
+ - eval_max_steps: -1
129
+ - load_best_model_at_end: False
130
+
131
+ ### Training Results
132
+ | Epoch | Step | Training Loss | Validation Loss |
133
+ |:------:|:----:|:-------------:|:---------------:|
134
+ | 0.0417 | 1 | 0.1437 | - |
135
+
136
+ ### Framework Versions
137
+ - Python: 3.10.12
138
+ - SetFit: 1.1.0
139
+ - Sentence Transformers: 3.1.1
140
+ - Transformers: 4.44.2
141
+ - PyTorch: 2.4.1+cu121
142
+ - Datasets: 3.0.1
143
+ - Tokenizers: 0.19.1
144
+
145
+ ## Citation
146
+
147
+ ### BibTeX
148
+ ```bibtex
149
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
150
+ doi = {10.48550/ARXIV.2209.11055},
151
+ url = {https://arxiv.org/abs/2209.11055},
152
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
153
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
154
+ title = {Efficient Few-Shot Learning Without Prompts},
155
+ publisher = {arXiv},
156
+ year = {2022},
157
+ copyright = {Creative Commons Attribution 4.0 International}
158
+ }
159
+ ```
160
+
161
+ <!--
162
+ ## Glossary
163
+
164
+ *Clearly define terms in order to be accessible across audiences.*
165
+ -->
166
+
167
+ <!--
168
+ ## Model Card Authors
169
+
170
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
171
+ -->
172
+
173
+ <!--
174
+ ## Model Card Contact
175
+
176
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
177
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "TaylorAI/bge-micro-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 3,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.44.2",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95730c9b369bfd8bcfd69c2ed47451e57762f459c47dd2c194538a5a755f76c4
3
+ size 69565312
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c76fb20f9155657145a6171ba440b622e48ad7d4a4368858c0f082506cc1f30
3
+ size 10111
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "[PAD]",
4
+ "[UNK]",
5
+ "[CLS]",
6
+ "[SEP]",
7
+ "[MASK]"
8
+ ],
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "mask_token": {
17
+ "content": "[MASK]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "pad_token": {
24
+ "content": "[PAD]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "sep_token": {
31
+ "content": "[SEP]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "unk_token": {
38
+ "content": "[UNK]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ }
44
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [
45
+ "[PAD]",
46
+ "[UNK]",
47
+ "[CLS]",
48
+ "[SEP]",
49
+ "[MASK]"
50
+ ],
51
+ "clean_up_tokenization_spaces": true,
52
+ "cls_token": "[CLS]",
53
+ "do_basic_tokenize": true,
54
+ "do_lower_case": true,
55
+ "mask_token": "[MASK]",
56
+ "max_length": 512,
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "pad_to_multiple_of": null,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_type_id": 0,
62
+ "padding_side": "right",
63
+ "sep_token": "[SEP]",
64
+ "stride": 0,
65
+ "strip_accents": null,
66
+ "tokenize_chinese_chars": true,
67
+ "tokenizer_class": "BertTokenizer",
68
+ "truncation_side": "right",
69
+ "truncation_strategy": "longest_first",
70
+ "unk_token": "[UNK]"
71
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff