File size: 14,087 Bytes
cf9a7c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
from collections import Counter, defaultdict
from tqdm import tqdm
from transformers import AutoTokenizer
from pathlib import Path
import json
import pickle
import os
import re
from transformers.tokenization_utils_base import BatchEncoding
import torch

class SKMorfoTokenizer:
    def __init__(self):
        self.tokenizer = AutoTokenizer.from_pretrained("gpt2")
        self.dictionary = None
        self.roots = None
        self.vocab_MDBSNK = None
        self.important_vocab_MDBSNK = None
        self.vocab = None
        self.merges = None
        self.reverse_vocab = None
        self.load_suplementary_files()

    def load_suplementary_files(self):
        current_dir = os.path.dirname(__file__)  # Adresár, kde sa nachádza tento súbor
        root_file = os.path.join(current_dir, 'word_root_20231210_sorted')
        vocab_file = os.path.join(current_dir, 'slova_MDBSNK')
        important_vocab_file = os.path.join(current_dir, 'dolezite_slova_MDBSNK')
        dictionary_file = os.path.join(current_dir, 'kodovanie.json')
        vocab_json_file = os.path.join(current_dir, 'tokenizers/SKMT_BPE/vocab.json')
        merges_txt_file = os.path.join(current_dir, 'tokenizers/SKMT_BPE/merges.txt')
        
        with open(root_file, 'rb') as f:
            self.roots = pickle.load(f)
        
        with open(vocab_file, 'rb') as f:
            self.vocab_MDBSNK = pickle.load(f)
            
        with open(important_vocab_file, 'rb') as f:
            self.important_vocab_MDBSNK = pickle.load(f)
            self.important_vocab_MDBSNK = set(self.important_vocab_MDBSNK)

        with open(dictionary_file, "r", encoding="utf-8") as f:
            self.dictionary = json.load(f)
            
        try:
            with open(vocab_json_file, "r", encoding="utf-8") as file:
                loaded_vocab = json.load(file)
            self.vocab = {prvok: index for prvok, index in loaded_vocab.items()}
            self.reverse_vocab = {v: k for k, v in self.vocab.items()}
        except FileNotFoundError:
            print("Súbor s vocab neexistuje.")
            
        try:
            with open(merges_txt_file, "r", encoding="utf-8") as file:
                loaded_merges = [tuple(line.split()) for line in file]
            self.merges = {pair: pair[0]+pair[1] for pair in loaded_merges}
        except FileNotFoundError:
            print("Súbor s merges neexistuje.")

    def decode(self, token):
        for k, v in self.dictionary.items():
            if k in token:
                token = token.replace(k, v)
        return token

    def split_word(self, text):
        """Tu sa rozdeluje slovo na znaky a korene, ak korene existujú pre dané slovo"""
        pattern = re.compile(r'§{([^}]+)}§|([^§{}]+)')

        result = []
        for match in pattern.finditer(text):
            inside_brackets, outside_brackets = match.groups()
            if inside_brackets is not None:
                result.append((inside_brackets, 1))
            if outside_brackets is not None:
                result.append((outside_brackets, 0))

        def replace_letters(string):
            for key, value in self.dictionary.items():
                string = re.sub(re.escape(value), key, string)
            return string

        result = [(replace_letters(s), n) for s, n in result]

        new_list = []
        for text, flag in result:
            if flag == 0:
                new_list.extend((char) for char in text)
            elif flag == 1:
                new_list.append((text))
        return new_list
    
    def valid_word(self, word):
        decoded = self.decode(word)
        if decoded.startswith("Ġ"):
            decoded = decoded[1:]
        if decoded[0].lower() in self.vocab_MDBSNK:
            if decoded in self.vocab_MDBSNK[decoded[0].lower()]:
                return True
        return False
    
    def all_words_spaces(self, word_freqs):
        def is_valid_word(word):
            special_chars = "jžxďqitürpľuknŕemfšřýťhzčäwáécóösyoĺěvôdlňabígú"
            pattern = f"^[a-z{special_chars}]+$"
            return re.search(pattern, word) is not None

        def decode(token):
            for k, v in self.dictionary.items():
                if k in token:
                    token = token.replace(k, v)
            return token

        unified_word_freqs = {}

        for word, freq in word_freqs.items():
            if word[0] == 'Ġ':
                if is_valid_word(decode(word[1:])):
                    if unified_word_freqs.get(word, 0) == 0:
                        pokus = word_freqs.get(word[1:], 0)
                        unified_word_freqs[word] = pokus + freq
                else:
                    unified_word_freqs[word] = freq
            else:
                if is_valid_word(decode(word)):
                    if unified_word_freqs.get("Ġ"+word, 0) == 0:
                        pokus = word_freqs.get("Ġ"+word, 0)
                        unified_word_freqs["Ġ"+word] = pokus + freq
                else:
                    unified_word_freqs[word] = freq

        return unified_word_freqs
    
    def all_words_spaces_tokenize(self, tokenized_text):
        def is_valid_word(word):
            special_chars = "jžxďqitürpľuknŕemfšřýťhzčäwáécóösyoĺěvôdlňabígú"
            pattern = f"^[a-z{special_chars}]+$"
            return re.search(pattern, word) is not None

        def decode(token):
            for k, v in self.dictionary.items():
                if k in token:
                    token = token.replace(k, v)
            return token

        unified_tokenized_text = []

        for word in tokenized_text:
            if word[0] == 'Ġ':
                unified_tokenized_text.append(word)
            else:
                if is_valid_word(decode(word)):
                    unified_tokenized_text.append("Ġ"+word)
                else:
                    unified_tokenized_text.append(word)

        return unified_tokenized_text

    def tokenize_half(self, text):
        
        pre_tokenize_result = self.tokenizer._tokenizer.pre_tokenizer.pre_tokenize_str(text)
        pre_tokenized_text = [word for word, offset in pre_tokenize_result]
        pre_tokenized_text = self.all_words_spaces_tokenize(pre_tokenized_text)

        splits = {}

        # Use tqdm to create a progress bar for the loop
        for word in pre_tokenized_text:
            decoded = self.decode(word)
            try:
                if decoded.startswith("Ġ"):
                    decoded = decoded[1:]
                    rooted = self.roots[decoded]
                    splits[word] = ["Ġ"] + self.split_word(rooted)
                else:
                    rooted = roots[decoded]
                    splits[word] = self.split_word(rooted)
            except:
                splits[word] = list(word)

        for pair, merge in self.merges.items():
            for idx, split in splits.items():
                i = 0
                while i < len(split) - 1:
                    if split[i] == pair[0] and split[i + 1] == pair[1]:
                        split = split[:i] + [merge] + split[i + 2 :]
                    else:
                        i += 1
                splits[idx] = split
                
        zoznam = []
        for slovo in pre_tokenized_text:
            if slovo in splits:
                zoznam.extend(splits[slovo])
        
        return zoznam
    
    def tokenize_additionally(self, word):
        split = list(word)
        
        for pair, merge in self.merges.items():
            i = 0
            while i < len(split) - 1:
                if split[i] == pair[0] and split[i + 1] == pair[1]:
                    split = split[:i] + [merge] + split[i + 2 :]
                else:
                    i += 1
        return split
        
    
    def tokenize(self, text, max_length=None, return_tensors=None, return_subword=False):
        
        casti = text.lower().split("<mask>", 1)
        
        if len(casti) == 1:
            zoznam = self.tokenize_half(text)
        else:
            zoznam = self.tokenize_half(casti[0].strip()) + ["<mask>"] + self.tokenize_half(casti[1])

        # Upraviť input_ids a attention_mask na základe max_length
        if max_length == None:
            return [prvok if prvok in self.vocab else "<unk>" for prvok in zoznam]
        
        # Ak sa token nenachádza v vocab, tak mu priradíme UNK idčko = 3
        input_ids = []
        for prvok in zoznam:
            if prvok in self.vocab:
                input_ids.append(self.vocab[prvok])
            else:
                try:
                    prvky_add = self.tokenize_additionally(prvok)
                    for prvok_add in prvky_add:
                        if prvok_add in self.vocab:
                            input_ids.append(self.vocab[prvok_add])
                        else:
                            input_ids.append(self.vocab["<unk>"])
                except Exception as e:
                    input_ids.append(self.vocab["<unk>"])
        
        if len(input_ids) >= max_length - 2:
            input_ids = input_ids[:max_length - 2]
            attention_mask = [1] * (max_length - 2)
            input_ids = [self.vocab["<s>"]] + input_ids + [self.vocab["</s>"]]
            attention_mask = [1] + attention_mask + [1]
        else:
            padding_length = max_length - len(input_ids) - 2
            input_ids = [self.vocab["<s>"]] + input_ids + [self.vocab["</s>"]]
            attention_mask = [1] * len(input_ids)
            input_ids += [self.vocab["<pad>"]] * padding_length
            attention_mask += [0] * padding_length
            
        # Zmena tu - Zabalíme výsledné tenzory do zoznamu jedného prvku
        output = {"input_ids": [input_ids], "attention_mask": [attention_mask]}
        if return_tensors == "pt":
            output = {key: torch.tensor(val) for key, val in output.items()}

        if return_subword:
            tokens = [self.reverse_vocab[idx] for idx in input_ids]
            return tokens
        
        return BatchEncoding(output)

    def tokenizeQA(self, text1, text2, max_length=None, return_tensors=None, return_subword=False):
        
        zoznam1 = self.tokenize_half(text1.lower().strip())
        zoznam2 = self.tokenize_half(text2.lower().strip())

        # Ak sa token nenachádza v vocab, tak mu priradíme UNK idčko = 3
        input_ids1 = []
        for prvok in zoznam1:
            if prvok in self.vocab:
                input_ids1.append(self.vocab[prvok])
            else:
                # print(f"Nemáme token pre: {prvok}")
                try:
                    prvky_add = self.tokenize_additionally(prvok)
                    for prvok_add in prvky_add:
                        if prvok_add in self.vocab:
                            input_ids1.append(self.vocab[prvok_add])
                        else:
                            input_ids1.append(self.vocab["<unk>"])
                except Exception as e:
                    print(f"Chyba pri spracovaní prvku {prvok}: {e}")
                    input_ids1.append(self.vocab["<unk>"])
        
        # Ak sa token nenachádza v vocab, tak mu priradíme UNK idčko = 3
        input_ids2 = []
        for prvok in zoznam2:
            if prvok in self.vocab:
                input_ids2.append(self.vocab[prvok])
            else:
                # print(f"Nemáme token pre: {prvok}")
                try:
                    prvky_add = self.tokenize_additionally(prvok)
                    for prvok_add in prvky_add:
                        if prvok_add in self.vocab:
                            input_ids2.append(self.vocab[prvok_add])
                        else:
                            input_ids2.append(self.vocab["<unk>"])
                except Exception as e:
                    print(f"Chyba pri spracovaní prvku {prvok}: {e}")
                    input_ids2.append(self.vocab["<unk>"])
        
        total_length = len(input_ids1) + len(input_ids2)

        if total_length >= max_length - 4:
            excess_length = total_length - (max_length - 4)
            while excess_length > 0:
                if len(input_ids1) >= len(input_ids2):
                    input_ids1 = input_ids1[:-1]
                else:
                    input_ids2 = input_ids2[:-1]
                excess_length -= 1

        input_ids1 = [self.vocab["<s>"]] + input_ids1 + [self.vocab["</s>"]]
        input_ids2 = [self.vocab["</s>"]] + input_ids2 + [self.vocab["</s>"]]
        input_ids = input_ids1 + input_ids2

        
        if len(input_ids) >= max_length:
            input_ids = input_ids[:max_length]
            attention_mask = [1] * (max_length)
        else:
            padding_length = max_length - len(input_ids)
            attention_mask = [1] * len(input_ids)
            input_ids += [self.vocab["<pad>"]] * padding_length
            attention_mask += [0] * padding_length
               
        # Zmena tu - Zabalíme výsledné tenzory do zoznamu jedného prvku
        output = {"input_ids": [input_ids], "attention_mask": [attention_mask]}
        
        if return_tensors == "pt":
            output = {key: torch.tensor(val) for key, val in output.items()}

        if return_subword:
            tokens = [self.reverse_vocab[idx] for idx in input_ids]
            return tokens
        
        return BatchEncoding(output)
    
    def convert_ids_to_tokens(self, input_id):
        return self.decode(self.reverse_vocab[input_id])
    
    def convert_list_ids_to_tokens(self, input_ids):
        tokens = []
        for input_id in input_ids:
            tokens.append(self.decode(self.reverse_vocab[input_id.item() if isinstance(input_id, torch.Tensor) else input_id]))
        return tokens
    
    def convert_tokens_to_ids(self, token):
        return self.vocab[token]
    
    def convert_list_tokens_to_ids(self, tokens):
        ids = []
        for token in tokens:
            ids.append(self.vocab[token])
        return ids