a2c-AntBulletEnv-v0 / config.json
davide1998's picture
Actor critic first
092da16
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc3cc81a9e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc3cc81aa70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc3cc81ab00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc3cc81ab90>", "_build": "<function ActorCriticPolicy._build at 0x7fc3cc81ac20>", "forward": "<function ActorCriticPolicy.forward at 0x7fc3cc81acb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc3cc81ad40>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc3cc81add0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc3cc81ae60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc3cc81aef0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc3cc81af80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc3cc85fd20>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1668512110654505674, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA9toev8GBTL5FI8Q+7YY0P+PyoD5N3KM/NHEdPqBBnz2TQKY+2OsaPiHbIL9MH6A/DJyEvxtShL4h1OQ+kN6AvFntNj5zOxu/hN2sPqU7Aj/s6ew984aov6xFwr3XZ689M3bmv/avnD5Tagc/lEeFP6FA1L/3pQ+/EBCdPdZMXL+5THE/iS9fPS7kGz/bvR4/z5c6P7JsFL61Vjq/P+qRvE0K1b9fFD27QMnBPilq6zyBaTI/An3zuwkHZT+uSAk9zhO1vpR/irxODIa/0aWOvCMvDj/2r5w+U2oHP5RHhT+wAw4+BsawPR2fDj+SvFC/J6/Sv29DtT6OAAu/641XPx7Gdz7fzzjAoTM1v2btAD+yRFy+h34ZwD4ejTy13h1AFLDlP3mJ5r7Vqk++7fwYvqx6Yj9vTku/Y+/qPTakjz4jLw4/9q+cPkH78b+UR4U/7rmaPjq3Ib867tE6U6+bP7auu7/Ubr29/mGAv886Dj6/9EY/UuvcPiNaML+eAM6+LIEeP7LepTxuQMM+HXX0vhkkab84zC+/rDI6v4bQNT4qX08/KI7jPfAknD7A4qu/Iy8OP/avnD5Tagc/7Nt1v5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAALkcJbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDlLTq9AAAAAGu75L8AAAAAvITdvQAAAAB1Y/s/AAAAAHw29j0AAAAA5OD4PwAAAAA576c9AAAAAJg88L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACWmQs1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeCoJvQAAAACQs+K/AAAAABoJqr0AAAAAvhfhPwAAAAAzl8q7AAAAAEBI8z8AAAAAj5aevQAAAABhtN2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZ3MHNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEKDBr0AAAAA3vH0vwAAAACWtLA9AAAAAPhy+D8AAAAA42efvAAAAACmetw/AAAAAPfhbzwAAAAAfsb2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPEy1DUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC4Swi+AAAAAOyG7r8AAAAAsugMvgAAAAC2w+U/AAAAALYPED4AAAAAb0LzPwAAAADsvpI9AAAAAAcF+r8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJNfxYSxqwiMAWyUTegDjAF0lEdAp7mJgPVd5nV9lChoBkdAk1Y2szVMEmgHTegDaAhHQKe8BQYUFjd1fZQoaAZHQJXDll/YraxoB03oA2gIR0CnvS//NqxkdX2UKGgGR0CPXBTzd1uBaAdN6ANoCEdAp790MLF4s3V9lChoBkdAkyQpgw482mgHTegDaAhHQKfGSQ6p5u91fZQoaAZHQI7IgoTfzjFoB03oA2gIR0CnyLqHO8kEdX2UKGgGR0CR1AHOryUcaAdN6ANoCEdAp8nj0g8r7XV9lChoBkdAkCdODaoMrmgHTegDaAhHQKfMJgxagVZ1fZQoaAZHQI/Z9Jtix3VoB03oA2gIR0Cn0uAPEsJ6dX2UKGgGR0CQL81GLDQ7aAdN6ANoCEdAp9VOc6Nly3V9lChoBkdAhmuUpd8iOmgHTegDaAhHQKfWhqGlANZ1fZQoaAZHQJHeuL/CIk9oB03oA2gIR0Cn2NGcFyJbdX2UKGgGR0CSLKbLU1AJaAdN6ANoCEdAp9/EDlo11nV9lChoBkdAf9R4tpVS42gHTegDaAhHQKfiQuBczIp1fZQoaAZHQI8QoPf8/EBoB03oA2gIR0Cn4249Pk7wdX2UKGgGR0CQsIdDYywfaAdN6ANoCEdAp+WvXK8tgHV9lChoBkdAjoEeLehwl2gHTegDaAhHQKfsoNhE0BR1fZQoaAZHQJG3FtALRa5oB03oA2gIR0Cn7wszEaVEdX2UKGgGR0CR/rfsu3+daAdN6ANoCEdAp/AuT7l7t3V9lChoBkdAj8woAXEZSGgHTegDaAhHQKfycZNO/L11fZQoaAZHQIxjg8SwnploB03oA2gIR0Cn+T/foA4odX2UKGgGR0CMl5CKrJbMaAdN6ANoCEdAp/uuC5EtunV9lChoBkdAkIW3BDXvpmgHTegDaAhHQKf8z9gF5fN1fZQoaAZHQJB+5dE9dNZoB03oA2gIR0Cn/xmucMEzdX2UKGgGR0CRYRHCXQdCaAdN6ANoCEdAqAYCab4Ju3V9lChoBkdAj4MGUwBYFWgHTegDaAhHQKgIbz19ORF1fZQoaAZHQIuEv8/D+BJoB03oA2gIR0CoCZiQLeANdX2UKGgGR0CNz3JAdGRWaAdN6ANoCEdAqAvkvM8oyHV9lChoBkdAi8NguqWC3GgHTegDaAhHQKgSnOIInjR1fZQoaAZHQJEGqrELpiZoB03oA2gIR0CoFPZn+Q2ddX2UKGgGR0CSDO+r2g3+aAdN6ANoCEdAqBYV5le4TnV9lChoBkdAinTKubI91WgHTegDaAhHQKgYUuAZsKt1fZQoaAZHQJAI6earmyRoB03oA2gIR0CoHxcjqv/zdX2UKGgGR0CMLhF8XvYwaAdN6ANoCEdAqCF+XmeUZHV9lChoBkdAkbRJmAbyY2gHTegDaAhHQKginG0eEIx1fZQoaAZHQIx1RKSPluFoB03oA2gIR0CoJNF10T11dX2UKGgGR0COkFFPSDywaAdN6ANoCEdAqCuoMDwH7nV9lChoBkdAkQM8MiKR+2gHTegDaAhHQKguHNqQA+91fZQoaAZHQJCycyLyc1BoB03oA2gIR0CoL0UnogV5dX2UKGgGR0CQEhhtLteEaAdN6ANoCEdAqDGH71qWT3V9lChoBkdAjbBE4WDYiGgHTegDaAhHQKg4YqgAZKp1fZQoaAZHQJBTPq6e5FxoB03oA2gIR0CoOtA8KXv6dX2UKGgGR0CO1h/c32mIaAdN6ANoCEdAqDvqUPhAGHV9lChoBkdAjYNWMju8b2gHTegDaAhHQKg+MP91loV1fZQoaAZHQJBSVASnLq5oB03oA2gIR0CoRP4dyT6jdX2UKGgGR0CRkutL+PzWaAdN6ANoCEdAqEdj2FnIyXV9lChoBkdAkIFgJw84gmgHTegDaAhHQKhIj6Ww/xF1fZQoaAZHQJA74I4VARloB03oA2gIR0CoSs2sq8UVdX2UKGgGR0CM2+Iyj59FaAdN6ANoCEdAqFGOxOclPnV9lChoBkdAkiCBlg+hXmgHTegDaAhHQKhT/Khcqvx1fZQoaAZHQJGR1oL5RCRoB03oA2gIR0CoVSvCEYfodX2UKGgGR0CQoJF+uvECaAdN6ANoCEdAqFd8vsZ5zHV9lChoBkdAkR+Z5Z8rqmgHTegDaAhHQKheVP+n62x1fZQoaAZHQJBDZqGlANZoB03oA2gIR0CoYMiC8OCodX2UKGgGR0CRLTRQrMC+aAdN6ANoCEdAqGHnQyAQQXV9lChoBkdAkBm8qe9SM2gHTegDaAhHQKhkPcnmaH91fZQoaAZHQJA+euloDgZoB03oA2gIR0CoaxBgmZ3LdX2UKGgGR0CREOol2NedaAdN6ANoCEdAqG2AOUdJa3V9lChoBkdAj6meEIw/PmgHTegDaAhHQKhun/+85CF1fZQoaAZHQJAJCc4HX3BoB03oA2gIR0CocPVe0G/vdX2UKGgGR0CRWDcX3xnWaAdN6ANoCEdAqHfPnKW9lHV9lChoBkdAkVWt4JNTLmgHTegDaAhHQKh6OIrvsqt1fZQoaAZHQJD/OEnLJS1oB03oA2gIR0Coe17dSEUTdX2UKGgGR0CS8xznA6+4aAdN6ANoCEdAqH2w8QqZt3V9lChoBkdAkqNSG8EmpmgHTegDaAhHQKiEh8x9G7V1fZQoaAZHQJGHMmOU+s5oB03oA2gIR0CohwNipeeGdX2UKGgGR0CQUJwnYxtYaAdN6ANoCEdAqIgvVEuxr3V9lChoBkdAksGl23azvGgHTegDaAhHQKiKd5prULF1fZQoaAZHQJNfYHKOktVoB03oA2gIR0CokVAXVLBbdX2UKGgGR0CUCVKYAsClaAdN6ANoCEdAqJPYnhKlHnV9lChoBkdAk8BjoyKvV2gHTegDaAhHQKiU9m16Vt51fZQoaAZHQJHze5/b0vpoB03oA2gIR0ColzhuO0b+dX2UKGgGR0CUrdwLVnVYaAdN6ANoCEdAqJ4Hb/Ot4nV9lChoBkdAlIgnl0YCQ2gHTegDaAhHQKigfLsa86F1fZQoaAZHQJTOIgxJul5oB03oA2gIR0CooasKLKmsdX2UKGgGR0CVd2vWYnfEaAdN6ANoCEdAqKPoQvpQlHV9lChoBkdAk+C2gzxgA2gHTegDaAhHQKiqonG82751fZQoaAZHQJRk05U96kZoB03oA2gIR0CorRLWAf+1dX2UKGgGR0CUzBAsTWXkaAdN6ANoCEdAqK45suWa+nV9lChoBkdAlmt+2E0zj2gHTegDaAhHQKiwdIJZ4fR1fZQoaAZHQJSONwgkkbBoB03oA2gIR0CotyqUFB6bdX2UKGgGR0CUpZeXiR4haAdN6ANoCEdAqLmY0VJti3V9lChoBkdAlM5hREWqLmgHTegDaAhHQKi6vZvDP4V1fZQoaAZHQJROP531SO1oB03oA2gIR0CovPm3WnTBdX2UKGgGR0CXVTd3jdYXaAdN6ANoCEdAqMPdlXiiqXV9lChoBkdAlWY5mAbyY2gHTegDaAhHQKjGTvLowEh1fZQoaAZHQJQYfwF1SwZoB03oA2gIR0Cox3VCojwAdX2UKGgGR0CXmCNKyv9taAdN6ANoCEdAqMm50hePaXV9lChoBkdAlg10SZjQRmgHTegDaAhHQKjQvd8iOed1fZQoaAZHQJXGE9FF2FFoB03oA2gIR0Co02Iakyk9dX2UKGgGR0CUJknR9gF5aAdN6ANoCEdAqNSFtbcGknV9lChoBkdAkwVzHS4OMGgHTegDaAhHQKjWzzErGzd1fZQoaAZHQJSk6nKnvUloB03oA2gIR0Co3cPO6d1/dX2UKGgGR0CTtzm7J4jbaAdN6ANoCEdAqOApx95Qg3V9lChoBkdAkecX4fwI+mgHTegDaAhHQKjhUizsyBV1fZQoaAZHQJPJO5nUUfxoB03oA2gIR0Co459kBjnWdX2UKGgGR0CVZ048lolEaAdN6ANoCEdAqOplKNAC4nV9lChoBkdAlQQnQUpNK2gHTegDaAhHQKjs4c/dIoV1fZQoaAZHQJZBVMsYl6ZoB03oA2gIR0Co7g2PDHfedX2UKGgGR0CS+4JI1+AmaAdN6ANoCEdAqPBPDJlrdnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}