File size: 35,791 Bytes
70d19e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
import argparse
import hashlib
import itertools
import json
import math
import os
import random
import shutil
from contextlib import nullcontext
from pathlib import Path
from typing import Optional

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer

from diffusers import (AutoencoderKL, DDIMScheduler, DDPMScheduler,
                       StableDiffusionInpaintPipeline, UNet2DConditionModel)
from diffusers.optimization import get_scheduler

torch.backends.cudnn.benchmark = True


logger = get_logger(__name__)


def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--pretrained_vae_name_or_path",
        type=str,
        default=None,
        help="Path to pretrained vae or vae identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default="fp16",
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
        help="The prompt with identifier specifying the instance",
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
        help="The prompt to specify images in the same class as provided instance images.",
    )
    # parser.add_argument(
    #     "--save_sample_prompt",
    #     type=str,
    #     default=None,
    #     help="The prompt used to generate sample outputs to save.",
    # )
    parser.add_argument(
        "--save_sample_negative_prompt",
        type=str,
        default=None,
        help="The negative prompt used to generate sample outputs to save.",
    )
    parser.add_argument(
        "--n_save_sample",
        type=int,
        default=4,
        help="The number of samples to save.",
    )
    parser.add_argument(
        "--save_guidance_scale",
        type=float,
        default=7.5,
        help="CFG for save sample.",
    )
    parser.add_argument(
        "--save_infer_steps",
        type=int,
        default=50,
        help="The number of inference steps for save sample.",
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
        help="Flag to add prior preservation loss.",
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
            "Minimal class images for prior preservation loss. If not have enough images, additional images will be"
            " sampled with class_prompt."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="text-inversion-model",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
    )
    parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--log_interval", type=int, default=10, help="Log every N steps.")
    parser.add_argument("--save_interval", type=int, default=10_000, help="Save weights every N steps.")
    parser.add_argument("--save_min_steps", type=int, default=0, help="Start saving weights after N steps.")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
    parser.add_argument("--not_cache_latents", action="store_true", help="Do not precompute and cache latents from VAE.")
    parser.add_argument("--hflip", action="store_true", help="Apply horizontal flip data augmentation.")
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--concepts_list",
        type=str,
        default=None,
        help="Path to json containing multiple concepts, will overwrite parameters like instance_prompt, class_prompt, etc.",
    )

    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    return args


def get_cutout_holes(height, width, min_holes=8, max_holes=32, min_height=32, max_height=128, min_width=32, max_width=128):
    holes = []
    for _n in range(random.randint(min_holes, max_holes)):
        hole_height = random.randint(min_height, max_height)
        hole_width = random.randint(min_width, max_width)
        y1 = random.randint(0, height - hole_height)
        x1 = random.randint(0, width - hole_width)
        y2 = y1 + hole_height
        x2 = x1 + hole_width
        holes.append((x1, y1, x2, y2))
    return holes


def generate_random_mask(image):
    mask = torch.zeros_like(image[:1])
    holes = get_cutout_holes(mask.shape[1], mask.shape[2])
    for (x1, y1, x2, y2) in holes:
        mask[:, y1:y2, x1:x2] = 1.
    if random.uniform(0, 1) < 0.25:
        mask.fill_(1.)
    masked_image = image * (mask < 0.5)
    return mask, masked_image


class DreamBoothDataset(Dataset):
    """
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        concepts_list,
        tokenizer,
        with_prior_preservation=True,
        size=512,
        center_crop=False,
        num_class_images=None,
        hflip=False
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
        self.with_prior_preservation = with_prior_preservation
        self.instance_images_path = []
        self.class_images_path = []

        for concept in concepts_list:
            inst_img_path = [(x, concept["instance_prompt"]) for x in Path(concept["instance_data_dir"]).iterdir() if x.is_file()]
            self.instance_images_path.extend(inst_img_path)

            if with_prior_preservation:
                class_img_path = [(x, concept["class_prompt"]) for x in Path(concept["class_data_dir"]).iterdir() if x.is_file()]
                self.class_images_path.extend(class_img_path[:num_class_images])

        random.shuffle(self.instance_images_path)
        self.num_instance_images = len(self.instance_images_path)
        self.num_class_images = len(self.class_images_path)
        self._length = max(self.num_class_images, self.num_instance_images)

        self.image_transforms = transforms.Compose(
            [
                transforms.RandomHorizontalFlip(0.5 * hflip),
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_path, instance_prompt = self.instance_images_path[index % self.num_instance_images]
        instance_image = Image.open(instance_path)
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
        example["instance_masks"], example["instance_masked_images"] = generate_random_mask(example["instance_images"])
        example["instance_prompt_ids"] = self.tokenizer(
            instance_prompt,
            padding="max_length",
            truncation=True,
            max_length=self.tokenizer.model_max_length,
        ).input_ids

        if self.with_prior_preservation:
            class_path, class_prompt = self.class_images_path[index % self.num_class_images]
            class_image = Image.open(class_path)
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
            example["class_masks"], example["class_masked_images"] = generate_random_mask(example["class_images"])
            example["class_prompt_ids"] = self.tokenizer(
                class_prompt,
                padding="max_length",
                truncation=True,
                max_length=self.tokenizer.model_max_length,
            ).input_ids

        return example


class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


class LatentsDataset(Dataset):
    def __init__(self, latents_cache, text_encoder_cache):
        self.latents_cache = latents_cache
        self.text_encoder_cache = text_encoder_cache

    def __len__(self):
        return len(self.latents_cache)

    def __getitem__(self, index):
        return self.latents_cache[index], self.text_encoder_cache[index]


class AverageMeter:
    def __init__(self, name=None):
        self.name = name
        self.reset()

    def reset(self):
        self.sum = self.count = self.avg = 0

    def update(self, val, n=1):
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


def main(args):
    logging_dir = Path(args.output_dir, "0", args.logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with="tensorboard",
        logging_dir=logging_dir,
    )

    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

    if args.seed is not None:
        set_seed(args.seed)

    if args.concepts_list is None:
        args.concepts_list = [
            {
                "instance_prompt": args.instance_prompt,
                "class_prompt": args.class_prompt,
                "instance_data_dir": args.instance_data_dir,
                "class_data_dir": args.class_data_dir
            }
        ]
    else:
        with open(args.concepts_list, "r") as f:
            args.concepts_list = json.load(f)

    if args.with_prior_preservation:
        pipeline = None
        for concept in args.concepts_list:
            class_images_dir = Path(concept["class_data_dir"])
            class_images_dir.mkdir(parents=True, exist_ok=True)
            cur_class_images = len(list(class_images_dir.iterdir()))

            if cur_class_images < args.num_class_images:
                torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
                if pipeline is None:
                    pipeline = StableDiffusionInpaintPipeline.from_pretrained(
                        args.pretrained_model_name_or_path,
                        vae=AutoencoderKL.from_pretrained(
                            args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path,
                            revision=None if args.pretrained_vae_name_or_path else args.revision
                        ),
                        torch_dtype=torch_dtype,
                        safety_checker=None,
                        revision=args.revision
                    )
                    pipeline.set_progress_bar_config(disable=True)
                    pipeline.to(accelerator.device)

                num_new_images = args.num_class_images - cur_class_images
                logger.info(f"Number of class images to sample: {num_new_images}.")

                sample_dataset = PromptDataset(concept["class_prompt"], num_new_images)
                sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

                sample_dataloader = accelerator.prepare(sample_dataloader)

                inp_img = Image.new("RGB", (512, 512), color=(0, 0, 0))
                inp_mask = Image.new("L", (512, 512), color=255)

                with torch.autocast("cuda"), torch.inference_mode():
                    for example in tqdm(
                        sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
                    ):
                        images = pipeline(
                            prompt=example["prompt"],
                            image=inp_img,
                            mask_image=inp_mask,
                            num_inference_steps=args.save_infer_steps
                        ).images

                        for i, image in enumerate(images):
                            hash_image = hashlib.sha1(image.tobytes()).hexdigest()
                            image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                            image.save(image_filename)

        del pipeline
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    # Load the tokenizer
    if args.tokenizer_name:
        tokenizer = CLIPTokenizer.from_pretrained(
            args.tokenizer_name,
            revision=args.revision,
        )
    elif args.pretrained_model_name_or_path:
        tokenizer = CLIPTokenizer.from_pretrained(
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
        )

    # Load models and create wrapper for stable diffusion
    text_encoder = CLIPTextModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="text_encoder",
        revision=args.revision,
    )
    vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="vae",
        revision=args.revision,
    )
    unet = UNet2DConditionModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="unet",
        revision=args.revision,
        torch_dtype=torch.float32
    )

    vae.requires_grad_(False)
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
    optimizer = optimizer_class(
        params_to_optimize,
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")

    train_dataset = DreamBoothDataset(
        concepts_list=args.concepts_list,
        tokenizer=tokenizer,
        with_prior_preservation=args.with_prior_preservation,
        size=args.resolution,
        center_crop=args.center_crop,
        num_class_images=args.num_class_images,
        hflip=args.hflip
    )

    def collate_fn(examples):
        input_ids = [example["instance_prompt_ids"] for example in examples]
        pixel_values = [example["instance_images"] for example in examples]
        mask_values = [example["instance_masks"] for example in examples]
        masked_image_values = [example["instance_masked_images"] for example in examples]

        # Concat class and instance examples for prior preservation.
        # We do this to avoid doing two forward passes.
        if args.with_prior_preservation:
            input_ids += [example["class_prompt_ids"] for example in examples]
            pixel_values += [example["class_images"] for example in examples]
            mask_values += [example["class_masks"] for example in examples]
            masked_image_values += [example["class_masked_images"] for example in examples]

        pixel_values = torch.stack(pixel_values).to(memory_format=torch.contiguous_format).float()
        mask_values = torch.stack(mask_values).to(memory_format=torch.contiguous_format).float()
        masked_image_values = torch.stack(masked_image_values).to(memory_format=torch.contiguous_format).float()

        input_ids = tokenizer.pad(
            {"input_ids": input_ids},
            padding="max_length",
            max_length=tokenizer.model_max_length,
            return_tensors="pt",
        ).input_ids

        batch = {
            "input_ids": input_ids,
            "pixel_values": pixel_values,
            "mask_values": mask_values,
            "masked_image_values": masked_image_values
        }
        return batch

    train_dataloader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, pin_memory=True, num_workers=8
    )

    weight_dtype = torch.float32
    if args.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif args.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    # Move text_encode and vae to gpu.
    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.
    vae.to(accelerator.device, dtype=weight_dtype)
    if not args.train_text_encoder:
        text_encoder.to(accelerator.device, dtype=weight_dtype)

    if not args.not_cache_latents:
        latents_cache = []
        text_encoder_cache = []
        for batch in tqdm(train_dataloader, desc="Caching latents"):
            with torch.no_grad():
                batch["pixel_values"] = batch["pixel_values"].to(accelerator.device, non_blocking=True, dtype=weight_dtype)
                batch["input_ids"] = batch["input_ids"].to(accelerator.device, non_blocking=True)
                latents_cache.append(vae.encode(batch["pixel_values"]).latent_dist)
                if args.train_text_encoder:
                    text_encoder_cache.append(batch["input_ids"])
                else:
                    text_encoder_cache.append(text_encoder(batch["input_ids"])[0])
        train_dataset = LatentsDataset(latents_cache, text_encoder_cache)
        train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, collate_fn=lambda x: x, shuffle=True)

        del vae
        if not args.train_text_encoder:
            del text_encoder
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
    )

    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("dreambooth")

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")

    def save_weights(step):
        # Create the pipeline using using the trained modules and save it.
        if accelerator.is_main_process:
            if args.train_text_encoder:
                text_enc_model = accelerator.unwrap_model(text_encoder)
            else:
                text_enc_model = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision)
            scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
            pipeline = StableDiffusionInpaintPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                unet=accelerator.unwrap_model(unet),
                text_encoder=text_enc_model,
                vae=AutoencoderKL.from_pretrained(
                    args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path,
                    subfolder=None if args.pretrained_vae_name_or_path else "vae",
                    revision=None if args.pretrained_vae_name_or_path else args.revision
                ),
                safety_checker=None,
                scheduler=scheduler,
                torch_dtype=torch.float16,
                revision=args.revision,
            )
            save_dir = os.path.join(args.output_dir, f"{step}")
            pipeline.save_pretrained(save_dir)
            with open(os.path.join(save_dir, "args.json"), "w") as f:
                json.dump(args.__dict__, f, indent=2)

            shutil.copy("train_inpainting_dreambooth.py", save_dir)

            pipeline = pipeline.to(accelerator.device)
            pipeline.set_progress_bar_config(disable=True)
            for idx, concept in enumerate(args.concepts_list):
                g_cuda = torch.Generator(device=accelerator.device).manual_seed(args.seed)
                sample_dir = os.path.join(save_dir, "samples", str(idx))
                os.makedirs(sample_dir, exist_ok=True)
                inp_img = Image.new("RGB", (512, 512), color=(0, 0, 0))
                inp_mask = Image.new("L", (512, 512), color=255)
                with torch.autocast("cuda"), torch.inference_mode():
                    for i in tqdm(range(args.n_save_sample), desc="Generating samples"):
                        images = pipeline(
                            prompt=concept["instance_prompt"],
                            image=inp_img,
                            mask_image=inp_mask,
                            negative_prompt=args.save_sample_negative_prompt,
                            guidance_scale=args.save_guidance_scale,
                            num_inference_steps=args.save_infer_steps,
                            generator=g_cuda
                        ).images
                        images[0].save(os.path.join(sample_dir, f"{i}.png"))
            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            print(f"[*] Weights saved at {save_dir}")

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    progress_bar.set_description("Steps")
    global_step = 0
    loss_avg = AverageMeter()
    text_enc_context = nullcontext() if args.train_text_encoder else torch.no_grad()
    for epoch in range(args.num_train_epochs):
        unet.train()
        if args.train_text_encoder:
            text_encoder.train()
        random.shuffle(train_dataset.class_images_path)
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
                # Convert images to latent space
                with torch.no_grad():
                    if not args.not_cache_latents:
                        latent_dist = batch[0][0]
                    else:
                        latent_dist = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist
                        masked_latent_dist = vae.encode(batch["masked_image_values"].to(dtype=weight_dtype)).latent_dist
                    latents = latent_dist.sample() * 0.18215
                    masked_image_latents = masked_latent_dist.sample() * 0.18215
                    mask = F.interpolate(batch["mask_values"], scale_factor=1 / 8)

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]
                # Sample a random timestep for each image
                timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
                timesteps = timesteps.long()

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)

                # Get the text embedding for conditioning
                with text_enc_context:
                    if not args.not_cache_latents:
                        if args.train_text_encoder:
                            encoder_hidden_states = text_encoder(batch[0][1])[0]
                        else:
                            encoder_hidden_states = batch[0][1]
                    else:
                        encoder_hidden_states = text_encoder(batch["input_ids"])[0]

                encoder_hidden_states = F.dropout(encoder_hidden_states, p=0.1)

                latent_model_input = torch.cat([noisy_latents, mask, masked_image_latents], dim=1)
                # Predict the noise residual
                noise_pred = unet(latent_model_input, timesteps, encoder_hidden_states).sample

                if args.with_prior_preservation:
                    # Chunk the noise and noise_pred into two parts and compute the loss on each part separately.
                    noise_pred, noise_pred_prior = torch.chunk(noise_pred, 2, dim=0)
                    noise, noise_prior = torch.chunk(noise, 2, dim=0)

                    # Compute instance loss
                    loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="none").mean([1, 2, 3]).mean()

                    # Compute prior loss
                    prior_loss = F.mse_loss(noise_pred_prior.float(), noise_prior.float(), reduction="mean")

                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss
                else:
                    loss = F.mse_loss(noise_pred.float(), noise.float(), reduction="mean")

                accelerator.backward(loss)
                # if accelerator.sync_gradients:
                #     params_to_clip = (
                #         itertools.chain(unet.parameters(), text_encoder.parameters())
                #         if args.train_text_encoder
                #         else unet.parameters()
                #     )
                #     accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad(set_to_none=True)
                loss_avg.update(loss.detach_(), bsz)

            if not global_step % args.log_interval:
                logs = {"loss": loss_avg.avg.item(), "lr": lr_scheduler.get_last_lr()[0]}
                progress_bar.set_postfix(**logs)
                accelerator.log(logs, step=global_step)

            if global_step > 0 and not global_step % args.save_interval and global_step >= args.save_min_steps:
                save_weights(global_step)

            progress_bar.update(1)
            global_step += 1

            if global_step >= args.max_train_steps:
                break

        accelerator.wait_for_everyone()

    save_weights(global_step)

    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()
    main(args)