--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xls-r-300m-closest-to-faroese-full-15k-steps_v7 results: [] --- # wav2vec2-xls-r-300m-closest-to-faroese-full-15k-steps_v7 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2472 - Wer: 95.4633 - Cer: 32.3403 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:------:|:-----:|:---------------:|:-------:|:-------:| | 13.1629 | 0.3349 | 1000 | 0.6152 | 63.3285 | 18.8424 | | 10.2766 | 0.6698 | 2000 | 0.4313 | 49.4623 | 13.6814 | | 7.9374 | 1.0044 | 3000 | 0.3649 | 43.9210 | 11.8791 | | 7.6787 | 1.3392 | 4000 | 0.3353 | 40.3217 | 10.5091 | | 7.4414 | 1.6741 | 5000 | 0.3097 | 38.5529 | 10.0199 | | 5.6641 | 2.0087 | 6000 | 0.2806 | 37.1760 | 9.5132 | | 19.8102 | 2.3436 | 7000 | 1.0119 | 81.0784 | 25.2870 | | 21.6448 | 2.6785 | 8000 | 1.1365 | 77.7051 | 26.4944 | | 20.3363 | 3.0131 | 9000 | 1.0859 | 88.1525 | 32.7446 | | 20.0312 | 3.3479 | 10000 | 1.0513 | 88.4973 | 30.9106 | | 21.5903 | 3.6828 | 11000 | 1.0996 | 90.2825 | 32.8604 | | 21.0909 | 4.0174 | 12000 | 1.0407 | 84.0173 | 26.3710 | | 23.4511 | 4.3523 | 13000 | 1.2414 | 80.7754 | 24.7467 | | 23.5201 | 4.6872 | 14000 | 1.2473 | 95.4625 | 32.3366 | | 24.6061 | 5.0218 | 15000 | 1.2472 | 95.4633 | 32.3403 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0