File size: 1,522 Bytes
625a888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import json
import os
from typing import Any, Dict, List

import numpy as np
from fastai.learner import load_learner
from PIL import Image


def label(file_name):
    return train_labels[file_name.replace(".jpg", "")]

class ImageClassificationPipeline:

  def __init__(self, path=""):
    # IMPLEMENT_THIS
    # Preload all the elements you are going to need at inference.
    # For instance your model, processors, tokenizer that might be needed.
    # This function is only called once, so do all the heavy processing I/O here"""
    self.model = load_learner(os.path.join(path, "model.pkl"))
    with open(os.path.join(path, "config.json")) as config:
      config = json.load(config)
    self.labels = config["labels"]

  def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
    print('call')
    """
        Args:
            inputs (:obj:`PIL.Image`):
                The raw image representation as PIL.
                No transformation made whatsoever from the input. Make all necessary transformations here.
        Return:
            A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
                It is preferred if the returned list is in decreasing `score` order
        """
    # IMPLEMENT_THIS
    # FastAI expects a np array, not a PIL Image.
    _, _, preds = self.model.predict(np.array(inputs))
    preds = preds.tolist()
    return [{
      "label": label,
      "score": preds[idx]
    } for idx, label in enumerate(self.labels)]