davidrd123
commited on
Commit
•
3688012
1
Parent(s):
5120cb1
Upload PPO LunarLander-v2 trained agent, 1st try, 1000000 steps
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2b.zip +3 -0
- ppo-LunarLander-v2b/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2b/data +94 -0
- ppo-LunarLander-v2b/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2b/policy.pth +3 -0
- ppo-LunarLander-v2b/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2b/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 282.51 +/- 13.55
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6285ac7050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6285ac70e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6285ac7170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6285ac7200>", "_build": "<function ActorCriticPolicy._build at 0x7f6285ac7290>", "forward": "<function ActorCriticPolicy.forward at 0x7f6285ac7320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6285ac73b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6285ac7440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6285ac74d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6285ac7560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6285ac75f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6285b20240>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652002184.361611, "learning_rate": 0.00052, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9BChN/OMVDhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKZTyj1IbKM7Iph3vgVweL6T1QG+MH6TPgAAgD8AAAAA2sP/PQg/tT+zK9M+Mza1vmsebz7ktog+AAAAAAAAAAAmSpo9OBuTuz+BG7ltIGg84HEBPXIsSL0AAIA/AACAP3Ozmj0VGQg/qh43vbyjJ78f4SE+GiZ8vQAAAAAAAAAAGrHbPXyHFz7/Vxe/9gfnvug0qjwpkwi/AAAAAAAAAACaS648Ii6pP8kIgT0q5BC/8YNaPUNlczwAAAAAAAAAAADAh7zs3q8/kgQMv5C7Er/4UV48LoJKPQAAAAAAAAAAExl/vgYxGD9+YDY+lLgVv9T9V76mTYs+AAAAAAAAAAAadge+usBxPl2qbz6C9+G+f5hova728T0AAAAAAAAAAJqVFLyAirU/hv7nviaKGj4SQg08iOqHPQAAAAAAAAAAZo34PD0DuD+A2TM+0N4AvtWZgT3eB/M9AAAAAAAAAAAAlMc9ontHPxrbrz1+b2K/pSpGPr+Ylb0AAAAAAAAAAM0MazrtwXc/XfOjPEYHeL9YSAi8Qu+sOwAAAAAAAAAAszsJPtBO5j6FxmC9/Usov/UxGz6uPgS+AAAAAAAAAADmVhc9hZezu66bAr19jwm8b5GPPM3gLz0AAIA/AACAPzPFKjzDPUO6Jc5Fs94jii9fdRg7gjnNMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuTR+4RW2b0CUhpRSlIwBbJRLpIwBdJRHQIz999a2Wpt1fZQoaAZoCWgPQwi8kXnkD4FzQJSGlFKUaBVLxmgWR0CM/lvWH1vmdX2UKGgGaAloD0MIX7NcNnpickCUhpRSlGgVS59oFkdAjP8EFwDNhXV9lChoBmgJaA9DCHWRQln4925AlIaUUpRoFUuaaBZHQI0AVjTa0yB1fZQoaAZoCWgPQwjtLHqnwqFxQJSGlFKUaBVLrWgWR0CNAIVIqbz9dX2UKGgGaAloD0MI3dPVHcuXckCUhpRSlGgVS79oFkdAjQExK6FuenV9lChoBmgJaA9DCNEeL6RDtnJAlIaUUpRoFUvjaBZHQI0BY+Ofdyl1fZQoaAZoCWgPQwgq/1peOSpxQJSGlFKUaBVLq2gWR0CNM/0se4kNdX2UKGgGaAloD0MI8UknEgwOckCUhpRSlGgVS59oFkdAjTQzGxUvPHV9lChoBmgJaA9DCFvvN9rxY3JAlIaUUpRoFUu2aBZHQI002kSElE91fZQoaAZoCWgPQwj1aRX9IdpyQJSGlFKUaBVLzGgWR0CNNORaHKwIdX2UKGgGaAloD0MIcclxpzTNcECUhpRSlGgVS61oFkdAjTT1L8Jla3V9lChoBmgJaA9DCCXqBZ/mTHFAlIaUUpRoFUugaBZHQI02IFPi1iR1fZQoaAZoCWgPQwi1cFmFjQtyQJSGlFKUaBVLvGgWR0CNNpEnb7CSdX2UKGgGaAloD0MIokRLHg8RckCUhpRSlGgVS7doFkdAjTaa86FM7HV9lChoBmgJaA9DCNx/ZDq0mXFAlIaUUpRoFUu7aBZHQI023WnTAnF1fZQoaAZoCWgPQwhHxmrzP6RxQJSGlFKUaBVLtGgWR0CNN1+ocaOxdX2UKGgGaAloD0MIeawZGaQncECUhpRSlGgVS69oFkdAjTeOMuOCG3V9lChoBmgJaA9DCGwm32xzpHBAlIaUUpRoFUu6aBZHQI04sSPEKmd1fZQoaAZoCWgPQwj2s1iKJGdxQJSGlFKUaBVLkmgWR0CNOVLFn7HidX2UKGgGaAloD0MI5SZqaa5YcECUhpRSlGgVS7ZoFkdAjTq+pOvdM3V9lChoBmgJaA9DCBjPoKF/wnJAlIaUUpRoFUvJaBZHQI06vjZL7Gh1fZQoaAZoCWgPQwhnmxvTE6FyQJSGlFKUaBVLyWgWR0CNOuyk9ECvdX2UKGgGaAloD0MItaM4R90DcECUhpRSlGgVS5VoFkdAjTtOlwcYInV9lChoBmgJaA9DCA5ORL92f3FAlIaUUpRoFUuiaBZHQI07xAUtZmt1fZQoaAZoCWgPQwgKavgWFvlyQJSGlFKUaBVLzWgWR0CNPMb6P8yfdX2UKGgGaAloD0MI7PZZZaY3c0CUhpRSlGgVS8BoFkdAjT0fYBeXzHV9lChoBmgJaA9DCGpPyTkx4m9AlIaUUpRoFUudaBZHQI09Zp+MIeJ1fZQoaAZoCWgPQwiD3bBt0T9wQJSGlFKUaBVLr2gWR0CNPbA/s3Q2dX2UKGgGaAloD0MIP+Hs1rKAc0CUhpRSlGgVS95oFkdAjT27Gm1pkHV9lChoBmgJaA9DCOSDns2qnHFAlIaUUpRoFUu2aBZHQI0+rlq8Djl1fZQoaAZoCWgPQwgIrYcvUz9xQJSGlFKUaBVLqmgWR0CNPuUnG828dX2UKGgGaAloD0MIIVhVL79nc0CUhpRSlGgVS85oFkdAjT9q+i8Fp3V9lChoBmgJaA9DCMKmzqOiYnJAlIaUUpRoFUu8aBZHQI0/fZh8Yyh1fZQoaAZoCWgPQwhhF0UP/DJxQJSGlFKUaBVLp2gWR0CNP+MmWt2cdX2UKGgGaAloD0MI4ezWMtnDcECUhpRSlGgVS5NoFkdAjUEaQFLWZ3V9lChoBmgJaA9DCLBUF/Ay/HFAlIaUUpRoFUuSaBZHQI1BcqhDgIh1fZQoaAZoCWgPQwhxVkRNtL1yQJSGlFKUaBVLymgWR0CNQfsa86FNdX2UKGgGaAloD0MIdelfkgolcUCUhpRSlGgVS7NoFkdAjUJXBYV6/3V9lChoBmgJaA9DCL8OnDPiEXJAlIaUUpRoFUu2aBZHQI1CdJJ5E+h1fZQoaAZoCWgPQwhDrWne8bJxQJSGlFKUaBVLjWgWR0CNQwbQ1JlKdX2UKGgGaAloD0MIu38sRMcYcUCUhpRSlGgVS49oFkdAjUO46GQCCHV9lChoBmgJaA9DCI6xE15CeHJAlIaUUpRoFUvUaBZHQI1Ezn5i3G51fZQoaAZoCWgPQwjidJKtboBxQJSGlFKUaBVLyWgWR0CNRVkVeruIdX2UKGgGaAloD0MIpz0l54TrckCUhpRSlGgVS7VoFkdAjUVk8A7xNXV9lChoBmgJaA9DCBwkRPkC/HBAlIaUUpRoFUuPaBZHQI1Fm4RVZLZ1fZQoaAZoCWgPQwhwd9ZuO2lwQJSGlFKUaBVLrWgWR0CNRhJCjUNKdX2UKGgGaAloD0MI1H0AUhs3cUCUhpRSlGgVS6VoFkdAjUZs10knkXV9lChoBmgJaA9DCPuvc9MmAnFAlIaUUpRoFUu1aBZHQI1GlenhsIp1fZQoaAZoCWgPQwjmV3OAIBNzQJSGlFKUaBVL22gWR0CNRqlabF0gdX2UKGgGaAloD0MIXOUJhN00cUCUhpRSlGgVS7FoFkdAjUdfx2B8QnV9lChoBmgJaA9DCPZ7Yp3qV3BAlIaUUpRoFUuZaBZHQI1H6x1PnCB1fZQoaAZoCWgPQwh7Lei9MdhOQJSGlFKUaBVLd2gWR0CNSAj9GZuydX2UKGgGaAloD0MI0NOAQRLTckCUhpRSlGgVS7RoFkdAjUiu0TlDGHV9lChoBmgJaA9DCFiNJayNRXFAlIaUUpRoFUumaBZHQI1JSvkili11fZQoaAZoCWgPQwgofLYODmpxQJSGlFKUaBVLtWgWR0CNSZXkHUtqdX2UKGgGaAloD0MINj0oKEVYc0CUhpRSlGgVS7RoFkdAjUoE2gnMMnV9lChoBmgJaA9DCLudfeUBbHJAlIaUUpRoFUu/aBZHQI1L3yNGViZ1fZQoaAZoCWgPQwjiAWVTLntwQJSGlFKUaBVLsmgWR0CNTeBQvYe1dX2UKGgGaAloD0MIPKWD9X9AcUCUhpRSlGgVS7NoFkdAjU5mbkOqenV9lChoBmgJaA9DCAA5YcKo7HFAlIaUUpRoFUucaBZHQI1OdXYDklx1fZQoaAZoCWgPQwh2Ul+WNqdxQJSGlFKUaBVL02gWR0CNTsnZTQ3QdX2UKGgGaAloD0MI6Zyf4vgJckCUhpRSlGgVS9hoFkdAjU79TYNAknV9lChoBmgJaA9DCOv+sRDdz3JAlIaUUpRoFUvpaBZHQI1POTRplBh1fZQoaAZoCWgPQwgAcsKEUWJyQJSGlFKUaBVL2GgWR0CNT0XfIjnndX2UKGgGaAloD0MIk6mCUYllckCUhpRSlGgVS8JoFkdAjU901ZTya3V9lChoBmgJaA9DCI4fKo3Y+XNAlIaUUpRoFUvHaBZHQI1PlkUbkwN1fZQoaAZoCWgPQwilETP7vBJyQJSGlFKUaBVLrWgWR0CNT/1dPci4dX2UKGgGaAloD0MI+kSeJN3nckCUhpRSlGgVS7ZoFkdAjVA9KNAC4nV9lChoBmgJaA9DCDoktVCyN3JAlIaUUpRoFUu+aBZHQI1RTWd3B551fZQoaAZoCWgPQwiJCWr4FotxQJSGlFKUaBVLuWgWR0CNUbFrl/6PdX2UKGgGaAloD0MI09heC/pqc0CUhpRSlGgVS8FoFkdAjVLXsHB1tHV9lChoBmgJaA9DCHzzGyZa1HJAlIaUUpRoFUvVaBZHQI1TUQEpy6t1fZQoaAZoCWgPQwjT9xqC4+lyQJSGlFKUaBVLsWgWR0CNU/3X7LuAdX2UKGgGaAloD0MIx7q4jQZAU0CUhpRSlGgVS4xoFkdAjVSnbRF7U3V9lChoBmgJaA9DCDsA4q5eo3JAlIaUUpRoFUuXaBZHQI1V5ztCzC11fZQoaAZoCWgPQwjrVWR0QApzQJSGlFKUaBVLt2gWR0CNVieq7yxzdX2UKGgGaAloD0MIRUqzeZzCcUCUhpRSlGgVS7FoFkdAjVamax5cDHV9lChoBmgJaA9DCOVfyyuXQXRAlIaUUpRoFUu0aBZHQI1Xm3trsSl1fZQoaAZoCWgPQwhq96sAX+FxQJSGlFKUaBVLpWgWR0CNV7QhOgxrdX2UKGgGaAloD0MIEsE4uHQrc0CUhpRSlGgVS8FoFkdAjVgULDye7XV9lChoBmgJaA9DCMUe2sfK0nJAlIaUUpRoFUvGaBZHQI1YFbTtsvZ1fZQoaAZoCWgPQwgqG9ZUFghyQJSGlFKUaBVLs2gWR0CNWBUx20RfdX2UKGgGaAloD0MI9FMcB953ckCUhpRSlGgVS9JoFkdAjVhjbSJCSnV9lChoBmgJaA9DCD5d3bEYc3RAlIaUUpRoFUvhaBZHQI1Yj7Kq4pd1fZQoaAZoCWgPQwg9murJPJlxQJSGlFKUaBVLr2gWR0CNWafRNRFadX2UKGgGaAloD0MILev+sRCmckCUhpRSlGgVS7loFkdAjVmxcNYr8XV9lChoBmgJaA9DCCTyXUrdNnNAlIaUUpRoFUutaBZHQI1byRyOrAB1fZQoaAZoCWgPQwg/i6VIfnNyQJSGlFKUaBVLyGgWR0CNXFr6+FlDdX2UKGgGaAloD0MIhdIXQo6pckCUhpRSlGgVS9doFkdAjVyXhn8KonV9lChoBmgJaA9DCKJe8GnO3HFAlIaUUpRoFUuyaBZHQI1csABDG991fZQoaAZoCWgPQwg/br98sq5wQJSGlFKUaBVLrWgWR0CNXZ2wmmcfdX2UKGgGaAloD0MIcR3jisufcUCUhpRSlGgVS5poFkdAjV5gPmPo3nV9lChoBmgJaA9DCD3vxoKCP3JAlIaUUpRoFUuRaBZHQI1eapkwvg51fZQoaAZoCWgPQwivXdpwWBBxQJSGlFKUaBVLqmgWR0CNXzBciW3SdX2UKGgGaAloD0MIelVntQBAckCUhpRSlGgVS9JoFkdAjV+DKYAsCnV9lChoBmgJaA9DCJAwDFjy83JAlIaUUpRoFUvJaBZHQI1flygf2bp1fZQoaAZoCWgPQwj6uDZUDEhyQJSGlFKUaBVLrmgWR0CNYAR15jYqdX2UKGgGaAloD0MIL4Zyol3IbkCUhpRSlGgVS5toFkdAjWCUQ04zanV9lChoBmgJaA9DCKdaC7PQR3JAlIaUUpRoFUvDaBZHQI1gn1QIldF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1240, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.0077, "vf_coef": 0.517, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2b.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e02bcaf1b07948cdcbf42604d685ebc5adfee60996a56ecd749cd8304c9974c8
|
3 |
+
size 143989
|
ppo-LunarLander-v2b/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2b/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6285ac7050>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6285ac70e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6285ac7170>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6285ac7200>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6285ac7290>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6285ac7320>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6285ac73b0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6285ac7440>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6285ac74d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6285ac7560>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6285ac75f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6285b20240>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652002184.361611,
|
51 |
+
"learning_rate": 0.00052,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9BChN/OMVDhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKZTyj1IbKM7Iph3vgVweL6T1QG+MH6TPgAAgD8AAAAA2sP/PQg/tT+zK9M+Mza1vmsebz7ktog+AAAAAAAAAAAmSpo9OBuTuz+BG7ltIGg84HEBPXIsSL0AAIA/AACAP3Ozmj0VGQg/qh43vbyjJ78f4SE+GiZ8vQAAAAAAAAAAGrHbPXyHFz7/Vxe/9gfnvug0qjwpkwi/AAAAAAAAAACaS648Ii6pP8kIgT0q5BC/8YNaPUNlczwAAAAAAAAAAADAh7zs3q8/kgQMv5C7Er/4UV48LoJKPQAAAAAAAAAAExl/vgYxGD9+YDY+lLgVv9T9V76mTYs+AAAAAAAAAAAadge+usBxPl2qbz6C9+G+f5hova728T0AAAAAAAAAAJqVFLyAirU/hv7nviaKGj4SQg08iOqHPQAAAAAAAAAAZo34PD0DuD+A2TM+0N4AvtWZgT3eB/M9AAAAAAAAAAAAlMc9ontHPxrbrz1+b2K/pSpGPr+Ylb0AAAAAAAAAAM0MazrtwXc/XfOjPEYHeL9YSAi8Qu+sOwAAAAAAAAAAszsJPtBO5j6FxmC9/Usov/UxGz6uPgS+AAAAAAAAAADmVhc9hZezu66bAr19jwm8b5GPPM3gLz0AAIA/AACAPzPFKjzDPUO6Jc5Fs94jii9fdRg7gjnNMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIuTR+4RW2b0CUhpRSlIwBbJRLpIwBdJRHQIz999a2Wpt1fZQoaAZoCWgPQwi8kXnkD4FzQJSGlFKUaBVLxmgWR0CM/lvWH1vmdX2UKGgGaAloD0MIX7NcNnpickCUhpRSlGgVS59oFkdAjP8EFwDNhXV9lChoBmgJaA9DCHWRQln4925AlIaUUpRoFUuaaBZHQI0AVjTa0yB1fZQoaAZoCWgPQwjtLHqnwqFxQJSGlFKUaBVLrWgWR0CNAIVIqbz9dX2UKGgGaAloD0MI3dPVHcuXckCUhpRSlGgVS79oFkdAjQExK6FuenV9lChoBmgJaA9DCNEeL6RDtnJAlIaUUpRoFUvjaBZHQI0BY+Ofdyl1fZQoaAZoCWgPQwgq/1peOSpxQJSGlFKUaBVLq2gWR0CNM/0se4kNdX2UKGgGaAloD0MI8UknEgwOckCUhpRSlGgVS59oFkdAjTQzGxUvPHV9lChoBmgJaA9DCFvvN9rxY3JAlIaUUpRoFUu2aBZHQI002kSElE91fZQoaAZoCWgPQwj1aRX9IdpyQJSGlFKUaBVLzGgWR0CNNORaHKwIdX2UKGgGaAloD0MIcclxpzTNcECUhpRSlGgVS61oFkdAjTT1L8Jla3V9lChoBmgJaA9DCCXqBZ/mTHFAlIaUUpRoFUugaBZHQI02IFPi1iR1fZQoaAZoCWgPQwi1cFmFjQtyQJSGlFKUaBVLvGgWR0CNNpEnb7CSdX2UKGgGaAloD0MIokRLHg8RckCUhpRSlGgVS7doFkdAjTaa86FM7HV9lChoBmgJaA9DCNx/ZDq0mXFAlIaUUpRoFUu7aBZHQI023WnTAnF1fZQoaAZoCWgPQwhHxmrzP6RxQJSGlFKUaBVLtGgWR0CNN1+ocaOxdX2UKGgGaAloD0MIeawZGaQncECUhpRSlGgVS69oFkdAjTeOMuOCG3V9lChoBmgJaA9DCGwm32xzpHBAlIaUUpRoFUu6aBZHQI04sSPEKmd1fZQoaAZoCWgPQwj2s1iKJGdxQJSGlFKUaBVLkmgWR0CNOVLFn7HidX2UKGgGaAloD0MI5SZqaa5YcECUhpRSlGgVS7ZoFkdAjTq+pOvdM3V9lChoBmgJaA9DCBjPoKF/wnJAlIaUUpRoFUvJaBZHQI06vjZL7Gh1fZQoaAZoCWgPQwhnmxvTE6FyQJSGlFKUaBVLyWgWR0CNOuyk9ECvdX2UKGgGaAloD0MItaM4R90DcECUhpRSlGgVS5VoFkdAjTtOlwcYInV9lChoBmgJaA9DCA5ORL92f3FAlIaUUpRoFUuiaBZHQI07xAUtZmt1fZQoaAZoCWgPQwgKavgWFvlyQJSGlFKUaBVLzWgWR0CNPMb6P8yfdX2UKGgGaAloD0MI7PZZZaY3c0CUhpRSlGgVS8BoFkdAjT0fYBeXzHV9lChoBmgJaA9DCGpPyTkx4m9AlIaUUpRoFUudaBZHQI09Zp+MIeJ1fZQoaAZoCWgPQwiD3bBt0T9wQJSGlFKUaBVLr2gWR0CNPbA/s3Q2dX2UKGgGaAloD0MIP+Hs1rKAc0CUhpRSlGgVS95oFkdAjT27Gm1pkHV9lChoBmgJaA9DCOSDns2qnHFAlIaUUpRoFUu2aBZHQI0+rlq8Djl1fZQoaAZoCWgPQwgIrYcvUz9xQJSGlFKUaBVLqmgWR0CNPuUnG828dX2UKGgGaAloD0MIIVhVL79nc0CUhpRSlGgVS85oFkdAjT9q+i8Fp3V9lChoBmgJaA9DCMKmzqOiYnJAlIaUUpRoFUu8aBZHQI0/fZh8Yyh1fZQoaAZoCWgPQwhhF0UP/DJxQJSGlFKUaBVLp2gWR0CNP+MmWt2cdX2UKGgGaAloD0MI4ezWMtnDcECUhpRSlGgVS5NoFkdAjUEaQFLWZ3V9lChoBmgJaA9DCLBUF/Ay/HFAlIaUUpRoFUuSaBZHQI1BcqhDgIh1fZQoaAZoCWgPQwhxVkRNtL1yQJSGlFKUaBVLymgWR0CNQfsa86FNdX2UKGgGaAloD0MIdelfkgolcUCUhpRSlGgVS7NoFkdAjUJXBYV6/3V9lChoBmgJaA9DCL8OnDPiEXJAlIaUUpRoFUu2aBZHQI1CdJJ5E+h1fZQoaAZoCWgPQwhDrWne8bJxQJSGlFKUaBVLjWgWR0CNQwbQ1JlKdX2UKGgGaAloD0MIu38sRMcYcUCUhpRSlGgVS49oFkdAjUO46GQCCHV9lChoBmgJaA9DCI6xE15CeHJAlIaUUpRoFUvUaBZHQI1Ezn5i3G51fZQoaAZoCWgPQwjidJKtboBxQJSGlFKUaBVLyWgWR0CNRVkVeruIdX2UKGgGaAloD0MIpz0l54TrckCUhpRSlGgVS7VoFkdAjUVk8A7xNXV9lChoBmgJaA9DCBwkRPkC/HBAlIaUUpRoFUuPaBZHQI1Fm4RVZLZ1fZQoaAZoCWgPQwhwd9ZuO2lwQJSGlFKUaBVLrWgWR0CNRhJCjUNKdX2UKGgGaAloD0MI1H0AUhs3cUCUhpRSlGgVS6VoFkdAjUZs10knkXV9lChoBmgJaA9DCPuvc9MmAnFAlIaUUpRoFUu1aBZHQI1GlenhsIp1fZQoaAZoCWgPQwjmV3OAIBNzQJSGlFKUaBVL22gWR0CNRqlabF0gdX2UKGgGaAloD0MIXOUJhN00cUCUhpRSlGgVS7FoFkdAjUdfx2B8QnV9lChoBmgJaA9DCPZ7Yp3qV3BAlIaUUpRoFUuZaBZHQI1H6x1PnCB1fZQoaAZoCWgPQwh7Lei9MdhOQJSGlFKUaBVLd2gWR0CNSAj9GZuydX2UKGgGaAloD0MI0NOAQRLTckCUhpRSlGgVS7RoFkdAjUiu0TlDGHV9lChoBmgJaA9DCFiNJayNRXFAlIaUUpRoFUumaBZHQI1JSvkili11fZQoaAZoCWgPQwgofLYODmpxQJSGlFKUaBVLtWgWR0CNSZXkHUtqdX2UKGgGaAloD0MINj0oKEVYc0CUhpRSlGgVS7RoFkdAjUoE2gnMMnV9lChoBmgJaA9DCLudfeUBbHJAlIaUUpRoFUu/aBZHQI1L3yNGViZ1fZQoaAZoCWgPQwjiAWVTLntwQJSGlFKUaBVLsmgWR0CNTeBQvYe1dX2UKGgGaAloD0MIPKWD9X9AcUCUhpRSlGgVS7NoFkdAjU5mbkOqenV9lChoBmgJaA9DCAA5YcKo7HFAlIaUUpRoFUucaBZHQI1OdXYDklx1fZQoaAZoCWgPQwh2Ul+WNqdxQJSGlFKUaBVL02gWR0CNTsnZTQ3QdX2UKGgGaAloD0MI6Zyf4vgJckCUhpRSlGgVS9hoFkdAjU79TYNAknV9lChoBmgJaA9DCOv+sRDdz3JAlIaUUpRoFUvpaBZHQI1POTRplBh1fZQoaAZoCWgPQwgAcsKEUWJyQJSGlFKUaBVL2GgWR0CNT0XfIjnndX2UKGgGaAloD0MIk6mCUYllckCUhpRSlGgVS8JoFkdAjU901ZTya3V9lChoBmgJaA9DCI4fKo3Y+XNAlIaUUpRoFUvHaBZHQI1PlkUbkwN1fZQoaAZoCWgPQwilETP7vBJyQJSGlFKUaBVLrWgWR0CNT/1dPci4dX2UKGgGaAloD0MI+kSeJN3nckCUhpRSlGgVS7ZoFkdAjVA9KNAC4nV9lChoBmgJaA9DCDoktVCyN3JAlIaUUpRoFUu+aBZHQI1RTWd3B551fZQoaAZoCWgPQwiJCWr4FotxQJSGlFKUaBVLuWgWR0CNUbFrl/6PdX2UKGgGaAloD0MI09heC/pqc0CUhpRSlGgVS8FoFkdAjVLXsHB1tHV9lChoBmgJaA9DCHzzGyZa1HJAlIaUUpRoFUvVaBZHQI1TUQEpy6t1fZQoaAZoCWgPQwjT9xqC4+lyQJSGlFKUaBVLsWgWR0CNU/3X7LuAdX2UKGgGaAloD0MIx7q4jQZAU0CUhpRSlGgVS4xoFkdAjVSnbRF7U3V9lChoBmgJaA9DCDsA4q5eo3JAlIaUUpRoFUuXaBZHQI1V5ztCzC11fZQoaAZoCWgPQwjrVWR0QApzQJSGlFKUaBVLt2gWR0CNVieq7yxzdX2UKGgGaAloD0MIRUqzeZzCcUCUhpRSlGgVS7FoFkdAjVamax5cDHV9lChoBmgJaA9DCOVfyyuXQXRAlIaUUpRoFUu0aBZHQI1Xm3trsSl1fZQoaAZoCWgPQwhq96sAX+FxQJSGlFKUaBVLpWgWR0CNV7QhOgxrdX2UKGgGaAloD0MIEsE4uHQrc0CUhpRSlGgVS8FoFkdAjVgULDye7XV9lChoBmgJaA9DCMUe2sfK0nJAlIaUUpRoFUvGaBZHQI1YFbTtsvZ1fZQoaAZoCWgPQwgqG9ZUFghyQJSGlFKUaBVLs2gWR0CNWBUx20RfdX2UKGgGaAloD0MI9FMcB953ckCUhpRSlGgVS9JoFkdAjVhjbSJCSnV9lChoBmgJaA9DCD5d3bEYc3RAlIaUUpRoFUvhaBZHQI1Yj7Kq4pd1fZQoaAZoCWgPQwg9murJPJlxQJSGlFKUaBVLr2gWR0CNWafRNRFadX2UKGgGaAloD0MILev+sRCmckCUhpRSlGgVS7loFkdAjVmxcNYr8XV9lChoBmgJaA9DCCTyXUrdNnNAlIaUUpRoFUutaBZHQI1byRyOrAB1fZQoaAZoCWgPQwg/i6VIfnNyQJSGlFKUaBVLyGgWR0CNXFr6+FlDdX2UKGgGaAloD0MIhdIXQo6pckCUhpRSlGgVS9doFkdAjVyXhn8KonV9lChoBmgJaA9DCKJe8GnO3HFAlIaUUpRoFUuyaBZHQI1csABDG991fZQoaAZoCWgPQwg/br98sq5wQJSGlFKUaBVLrWgWR0CNXZ2wmmcfdX2UKGgGaAloD0MIcR3jisufcUCUhpRSlGgVS5poFkdAjV5gPmPo3nV9lChoBmgJaA9DCD3vxoKCP3JAlIaUUpRoFUuRaBZHQI1eapkwvg51fZQoaAZoCWgPQwivXdpwWBBxQJSGlFKUaBVLqmgWR0CNXzBciW3SdX2UKGgGaAloD0MIelVntQBAckCUhpRSlGgVS9JoFkdAjV+DKYAsCnV9lChoBmgJaA9DCJAwDFjy83JAlIaUUpRoFUvJaBZHQI1flygf2bp1fZQoaAZoCWgPQwj6uDZUDEhyQJSGlFKUaBVLrmgWR0CNYAR15jYqdX2UKGgGaAloD0MIL4Zyol3IbkCUhpRSlGgVS5toFkdAjWCUQ04zanV9lChoBmgJaA9DCKdaC7PQR3JAlIaUUpRoFUvDaBZHQI1gn1QIldF1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 1240,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.995,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.0077,
|
83 |
+
"vf_coef": 0.517,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2b/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:248c7ccc4ff7fdca2f02e4e63827ae58fcf4cef3fd3068490b61cf26d6017d25
|
3 |
+
size 84893
|
ppo-LunarLander-v2b/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bd0475ad93402710447545750d6234507a5f121203e93607a77d4a9dcad3d88
|
3 |
+
size 43201
|
ppo-LunarLander-v2b/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2b/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f4ef886d47cdfeb2506dac1147f5b97282812f5fea82de86ad6f7e5c6dced14
|
3 |
+
size 221359
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 282.5073271373771, "std_reward": 13.547107342217169, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T09:53:53.361054"}
|