Upload 3 files
Browse files- architecture.py +159 -0
- requirements.txt +7 -0
- tokenizer.py +51 -0
architecture.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
|
6 |
+
class PositionalEncoding(torch.nn.Module):
|
7 |
+
"""
|
8 |
+
https://pytorch.org/tutorials/beginner/transformer_tutorial.html
|
9 |
+
"""
|
10 |
+
|
11 |
+
def __init__(self, d_model: int, max_len: int = 512):
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
position = torch.arange(max_len).unsqueeze(1)
|
15 |
+
div_term = torch.exp(
|
16 |
+
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
|
17 |
+
)
|
18 |
+
|
19 |
+
pe = torch.zeros(max_len, d_model)
|
20 |
+
pe[:, : d_model // 2] = torch.sin(position * div_term)
|
21 |
+
pe[:, d_model // 2 :] = torch.cos(position * div_term)
|
22 |
+
|
23 |
+
self.register_buffer("pe", pe)
|
24 |
+
|
25 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
26 |
+
x = x + self.pe[: x.size(0)]
|
27 |
+
return x
|
28 |
+
|
29 |
+
|
30 |
+
class MultiheadSelfAttention(torch.nn.Module):
|
31 |
+
def __init__(self, embed_dim: int, num_heads: int = 8):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
self.embed_dim = embed_dim
|
35 |
+
self.num_heads = num_heads
|
36 |
+
|
37 |
+
self.query = torch.nn.Linear(
|
38 |
+
in_features=embed_dim,
|
39 |
+
out_features=embed_dim,
|
40 |
+
)
|
41 |
+
self.key = torch.nn.Linear(
|
42 |
+
in_features=embed_dim,
|
43 |
+
out_features=embed_dim,
|
44 |
+
)
|
45 |
+
self.value = torch.nn.Linear(
|
46 |
+
in_features=embed_dim,
|
47 |
+
out_features=embed_dim,
|
48 |
+
)
|
49 |
+
|
50 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
51 |
+
q = self.query(x).view(x.shape[0], self.num_heads, -1).transpose(0, 1)
|
52 |
+
k = self.key(x).view(x.shape[0], self.num_heads, -1).permute(1, 2, 0)
|
53 |
+
v = self.value(x).view(x.shape[0], self.num_heads, -1).transpose(0, 1)
|
54 |
+
qk = torch.softmax(
|
55 |
+
torch.matmul(q, k) / (self.embed_dim / self.num_heads) ** 0.5,
|
56 |
+
dim=-1,
|
57 |
+
)
|
58 |
+
qkv = torch.matmul(qk, v).transpose(0, 1).reshape(x.shape[0], -1)
|
59 |
+
return qkv
|
60 |
+
|
61 |
+
|
62 |
+
class Block(torch.nn.Module):
|
63 |
+
def __init__(self, d_model: int, num_heads: int = 8, eps: float = 1e-6):
|
64 |
+
super().__init__()
|
65 |
+
|
66 |
+
self.ln1 = torch.nn.LayerNorm(normalized_shape=d_model, eps=eps)
|
67 |
+
self.attn = MultiheadSelfAttention(embed_dim=d_model, num_heads=num_heads)
|
68 |
+
self.ln2 = torch.nn.LayerNorm(normalized_shape=d_model, eps=eps)
|
69 |
+
self.linear1 = torch.nn.Linear(in_features=d_model, out_features=d_model * 4)
|
70 |
+
self.linear2 = torch.nn.Linear(in_features=d_model * 4, out_features=d_model)
|
71 |
+
|
72 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
73 |
+
ln1 = self.ln1(x)
|
74 |
+
attn = self.attn(ln1)
|
75 |
+
ln2 = self.ln2(x + attn)
|
76 |
+
mlp = self.linear2(torch.relu(self.linear1(ln2)))
|
77 |
+
return mlp + x + attn
|
78 |
+
|
79 |
+
|
80 |
+
class Head(torch.nn.Module):
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
d_model: int,
|
84 |
+
eps: float = 1e-6,
|
85 |
+
):
|
86 |
+
super().__init__()
|
87 |
+
|
88 |
+
self.d_model = d_model
|
89 |
+
self.eps = eps
|
90 |
+
|
91 |
+
self.ln = torch.nn.LayerNorm(normalized_shape=d_model, eps=eps)
|
92 |
+
self.linear1 = torch.nn.Linear(in_features=d_model, out_features=d_model)
|
93 |
+
self.linear2 = torch.nn.Linear(in_features=d_model, out_features=d_model)
|
94 |
+
self.tanh_layer = torch.nn.Linear(in_features=d_model * 2, out_features=d_model)
|
95 |
+
|
96 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
97 |
+
ln = self.ln(x)
|
98 |
+
mlp = torch.exp(self.linear2(torch.nn.functional.elu(self.linear1(ln))))
|
99 |
+
res = torch.cat(
|
100 |
+
[
|
101 |
+
ln.sum(dim=0) / ln.shape[0],
|
102 |
+
(mlp * ln).sum(dim=0) / mlp.sum(dim=0),
|
103 |
+
]
|
104 |
+
)
|
105 |
+
res = torch.tanh(self.tanh_layer(res))
|
106 |
+
res /= (res**2).sum() ** 0.5
|
107 |
+
res /= (res**2).sum() ** 0.5
|
108 |
+
return res
|
109 |
+
|
110 |
+
|
111 |
+
class MUSE(torch.nn.Module):
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
num_embeddings: int,
|
115 |
+
embedding_dim: int,
|
116 |
+
d_model: int,
|
117 |
+
num_heads: int,
|
118 |
+
eps: float = 1e-6,
|
119 |
+
):
|
120 |
+
super().__init__()
|
121 |
+
|
122 |
+
self.num_embeddings = num_embeddings
|
123 |
+
self.embedding_dim = embedding_dim
|
124 |
+
self.d_model = d_model
|
125 |
+
self.num_heads = num_heads
|
126 |
+
self.eps = eps
|
127 |
+
|
128 |
+
self.embedding = torch.nn.Embedding(
|
129 |
+
num_embeddings=num_embeddings,
|
130 |
+
embedding_dim=embedding_dim,
|
131 |
+
)
|
132 |
+
self.linear = torch.nn.Linear(
|
133 |
+
in_features=embedding_dim,
|
134 |
+
out_features=d_model,
|
135 |
+
)
|
136 |
+
self.pe = PositionalEncoding(
|
137 |
+
d_model=d_model,
|
138 |
+
max_len=512, # TODO: remove hardcode
|
139 |
+
)
|
140 |
+
self.block0 = Block(d_model=d_model)
|
141 |
+
self.block1 = Block(d_model=d_model)
|
142 |
+
self.block2 = Block(d_model=d_model)
|
143 |
+
self.block3 = Block(d_model=d_model)
|
144 |
+
self.block4 = Block(d_model=d_model)
|
145 |
+
self.block5 = Block(d_model=d_model)
|
146 |
+
self.head = Head(d_model=d_model)
|
147 |
+
|
148 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
149 |
+
x = self.embedding(x)
|
150 |
+
x = self.linear(x)
|
151 |
+
x = self.pe(x)
|
152 |
+
x = self.block0(x)
|
153 |
+
x = self.block1(x)
|
154 |
+
x = self.block2(x)
|
155 |
+
x = self.block3(x)
|
156 |
+
x = self.block4(x)
|
157 |
+
x = self.block5(x)
|
158 |
+
x = self.head(x)
|
159 |
+
return x
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
onnx==1.16.0
|
2 |
+
onnxruntime==1.18.0
|
3 |
+
onnxruntime_extensions==0.10.1
|
4 |
+
tensorflow==2.16.1
|
5 |
+
tensorflow-hub==0.16.1
|
6 |
+
tensorflow-text==2.16.1
|
7 |
+
torch==2.3.0
|
tokenizer.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tensorflow.core.protobuf.saved_model_pb2 import SavedModel
|
3 |
+
from tensorflow.python.saved_model.loader_impl import parse_saved_model
|
4 |
+
from tensorflow_text.python.ops.sentencepiece_tokenizer import SentencepieceTokenizer
|
5 |
+
|
6 |
+
|
7 |
+
def _get_tokenizer_from_saved_model(saved_model: SavedModel) -> SentencepieceTokenizer:
|
8 |
+
"""
|
9 |
+
Get tokenizer from tf SavedModel.
|
10 |
+
:param SavedModel saved_model: tf SavedModel.
|
11 |
+
:return: tokenizer.
|
12 |
+
:rtype: SentencepieceTokenizer
|
13 |
+
"""
|
14 |
+
|
15 |
+
# extract functions that contain SentencePiece somewhere in there
|
16 |
+
functions_with_sp = [
|
17 |
+
f
|
18 |
+
for f in saved_model.meta_graphs[0].graph_def.library.function
|
19 |
+
if "tokenizer" in str(f).lower()
|
20 |
+
]
|
21 |
+
|
22 |
+
assert (
|
23 |
+
len(functions_with_sp) == 1
|
24 |
+
), f"len(functions_with_sp) = {len(functions_with_sp)}"
|
25 |
+
|
26 |
+
# find SentencePieceOp (contains the model) in the found function
|
27 |
+
nodes_with_sp = [
|
28 |
+
n for n in functions_with_sp[0].node_def if n.op == "SentencepieceOp"
|
29 |
+
]
|
30 |
+
|
31 |
+
assert len(nodes_with_sp) == 1, f"len(nodes_with_sp) = {len(nodes_with_sp)}"
|
32 |
+
|
33 |
+
# we can pretty much save the model into a file since it does not change
|
34 |
+
model = nodes_with_sp[0].attr["model"].s
|
35 |
+
|
36 |
+
# instantiate the model
|
37 |
+
tokenizer = SentencepieceTokenizer(model)
|
38 |
+
|
39 |
+
return tokenizer
|
40 |
+
|
41 |
+
|
42 |
+
def get_tokenizer(model_path: str) -> SentencepieceTokenizer:
|
43 |
+
tokenizer = _get_tokenizer_from_saved_model(parse_saved_model(model_path))
|
44 |
+
return tokenizer
|
45 |
+
|
46 |
+
|
47 |
+
def tokenize(
|
48 |
+
sentence: str, # TODO: add batch processing
|
49 |
+
tokenizer: SentencepieceTokenizer,
|
50 |
+
) -> torch.Tensor:
|
51 |
+
return torch.LongTensor([1] + tokenizer.tokenize([sentence]).to_list()[0] + [2])
|