Moreno La Quatra
commited on
Commit
•
bdf75cc
1
Parent(s):
d2a221b
Create eval.py
Browse files
eval.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import re
|
4 |
+
from typing import Dict
|
5 |
+
from sklearn import feature_extraction
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from src.data.normalization import normalize_string
|
9 |
+
from datasets import Audio, Dataset, load_dataset, load_metric
|
10 |
+
|
11 |
+
from transformers import (
|
12 |
+
AutoFeatureExtractor,
|
13 |
+
pipeline,
|
14 |
+
AutoTokenizer,
|
15 |
+
Wav2Vec2Processor,
|
16 |
+
Wav2Vec2ProcessorWithLM,
|
17 |
+
Wav2Vec2ForCTC,
|
18 |
+
AutoConfig,
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
def log_results(result: Dataset, args: Dict[str, str]):
|
23 |
+
"""DO NOT CHANGE. This function computes and logs the result metrics."""
|
24 |
+
|
25 |
+
log_outputs = args.log_outputs
|
26 |
+
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
|
27 |
+
|
28 |
+
# load metric
|
29 |
+
wer = load_metric("wer")
|
30 |
+
cer = load_metric("cer")
|
31 |
+
|
32 |
+
# compute metrics
|
33 |
+
wer_result = wer.compute(
|
34 |
+
references=result["target"], predictions=result["prediction"]
|
35 |
+
)
|
36 |
+
cer_result = cer.compute(
|
37 |
+
references=result["target"], predictions=result["prediction"]
|
38 |
+
)
|
39 |
+
|
40 |
+
# print & log results
|
41 |
+
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
|
42 |
+
print(result_str)
|
43 |
+
|
44 |
+
with open(f"{dataset_id}_eval_results.txt", "w") as f:
|
45 |
+
f.write(result_str)
|
46 |
+
|
47 |
+
# log all results in text file. Possibly interesting for analysis
|
48 |
+
if log_outputs is not None:
|
49 |
+
pred_file = f"log_{dataset_id}_predictions.txt"
|
50 |
+
target_file = f"log_{dataset_id}_targets.txt"
|
51 |
+
|
52 |
+
with open(pred_file, "w") as p, open(target_file, "w") as t:
|
53 |
+
|
54 |
+
# mapping function to write output
|
55 |
+
def write_to_file(batch, i):
|
56 |
+
p.write(f"{i}" + "\n")
|
57 |
+
p.write(batch["prediction"] + "\n")
|
58 |
+
t.write(f"{i}" + "\n")
|
59 |
+
t.write(batch["target"] + "\n")
|
60 |
+
|
61 |
+
result.map(write_to_file, with_indices=True)
|
62 |
+
|
63 |
+
|
64 |
+
def normalize_text(text: str, invalid_chars_regex: str, to_lower: bool) -> str:
|
65 |
+
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text."""
|
66 |
+
text = normalize_string(text)
|
67 |
+
text = text.lower() if to_lower else text.upper()
|
68 |
+
|
69 |
+
text = re.sub(invalid_chars_regex, " ", text)
|
70 |
+
text = re.sub("\s+", " ", text).strip()
|
71 |
+
|
72 |
+
return text
|
73 |
+
|
74 |
+
|
75 |
+
def main(args):
|
76 |
+
# load dataset
|
77 |
+
dataset = load_dataset(
|
78 |
+
args.dataset, args.config, split=args.split, use_auth_token=True
|
79 |
+
)
|
80 |
+
|
81 |
+
# for testing: only process the first two examples as a test
|
82 |
+
# dataset = dataset.select(range(10))
|
83 |
+
|
84 |
+
# load processor
|
85 |
+
# feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
|
86 |
+
# sampling_rate = feature_extractor.sampling_rate
|
87 |
+
|
88 |
+
if args.ctcdecode:
|
89 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
|
90 |
+
decoder = processor.decoder
|
91 |
+
else:
|
92 |
+
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
|
93 |
+
decoder = None
|
94 |
+
|
95 |
+
feature_extractor = processor.feature_extractor
|
96 |
+
tokenizer = processor.tokenizer
|
97 |
+
sampling_rate = feature_extractor.sampling_rate
|
98 |
+
|
99 |
+
config = AutoConfig.from_pretrained(args.model_id)
|
100 |
+
model = Wav2Vec2ForCTC.from_pretrained(args.model_id)
|
101 |
+
|
102 |
+
# resample audio
|
103 |
+
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
|
104 |
+
|
105 |
+
# load eval pipeline
|
106 |
+
if args.device is None:
|
107 |
+
args.device = 0 if torch.cuda.is_available() else -1
|
108 |
+
|
109 |
+
asr = pipeline(
|
110 |
+
"automatic-speech-recognition",
|
111 |
+
model=model,
|
112 |
+
config=config,
|
113 |
+
feature_extractor=feature_extractor,
|
114 |
+
decoder=decoder,
|
115 |
+
tokenizer=tokenizer,
|
116 |
+
device=args.device,
|
117 |
+
)
|
118 |
+
|
119 |
+
# build normalizer config
|
120 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
121 |
+
tokens = [
|
122 |
+
x for x in tokenizer.convert_ids_to_tokens(range(0, tokenizer.vocab_size))
|
123 |
+
]
|
124 |
+
special_tokens = [
|
125 |
+
tokenizer.pad_token,
|
126 |
+
tokenizer.word_delimiter_token,
|
127 |
+
tokenizer.unk_token,
|
128 |
+
tokenizer.bos_token,
|
129 |
+
tokenizer.eos_token,
|
130 |
+
]
|
131 |
+
non_special_tokens = [x for x in tokens if x not in special_tokens]
|
132 |
+
invalid_chars_regex = f"[^\s{re.escape(''.join(set(non_special_tokens)))}]"
|
133 |
+
normalize_to_lower = False
|
134 |
+
for token in non_special_tokens:
|
135 |
+
if token.isalpha() and token.islower():
|
136 |
+
normalize_to_lower = True
|
137 |
+
break
|
138 |
+
|
139 |
+
# map function to decode audio
|
140 |
+
def map_to_pred(
|
141 |
+
batch,
|
142 |
+
args=args,
|
143 |
+
asr=asr,
|
144 |
+
invalid_chars_regex=invalid_chars_regex,
|
145 |
+
normalize_to_lower=normalize_to_lower,
|
146 |
+
):
|
147 |
+
prediction = asr(
|
148 |
+
batch["audio"]["array"],
|
149 |
+
chunk_length_s=args.chunk_length_s,
|
150 |
+
stride_length_s=args.stride_length_s,
|
151 |
+
#decoder_kwargs={"beam_width": args.beam_width},
|
152 |
+
)
|
153 |
+
|
154 |
+
batch["prediction"] = prediction["text"]
|
155 |
+
batch["target"] = normalize_text(
|
156 |
+
batch["sentence"], invalid_chars_regex, normalize_to_lower
|
157 |
+
)
|
158 |
+
return batch
|
159 |
+
|
160 |
+
def map_and_decode(batch):
|
161 |
+
inputs = processor(
|
162 |
+
batch["audio"]["array"],
|
163 |
+
sampling_rate=batch["audio"]["sampling_rate"],
|
164 |
+
return_tensors="pt",
|
165 |
+
)
|
166 |
+
with torch.no_grad():
|
167 |
+
logits = model(**inputs).logits
|
168 |
+
transcription = processor.batch_decode(logits.numpy()).text
|
169 |
+
batch["prediction"] = transcription
|
170 |
+
batch["target"] = normalize_text(
|
171 |
+
batch["sentence"], invalid_chars_regex, normalize_to_lower
|
172 |
+
)
|
173 |
+
return batch
|
174 |
+
|
175 |
+
# transcription = .lower()
|
176 |
+
# run inference on all examples
|
177 |
+
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
|
178 |
+
|
179 |
+
# compute and log_results
|
180 |
+
# do not change function below
|
181 |
+
log_results(result, args)
|
182 |
+
|
183 |
+
|
184 |
+
if __name__ == "__main__":
|
185 |
+
parser = argparse.ArgumentParser()
|
186 |
+
|
187 |
+
parser.add_argument(
|
188 |
+
"--model_id",
|
189 |
+
type=str,
|
190 |
+
required=True,
|
191 |
+
help="Model identifier. Should be loadable with 🤗 Transformers",
|
192 |
+
)
|
193 |
+
parser.add_argument(
|
194 |
+
"--dataset",
|
195 |
+
type=str,
|
196 |
+
required=True,
|
197 |
+
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
|
198 |
+
)
|
199 |
+
parser.add_argument(
|
200 |
+
"--config",
|
201 |
+
type=str,
|
202 |
+
required=True,
|
203 |
+
help="Config of the dataset. *E.g.* `'en'` for Common Voice",
|
204 |
+
)
|
205 |
+
parser.add_argument(
|
206 |
+
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
|
207 |
+
)
|
208 |
+
parser.add_argument(
|
209 |
+
"--chunk_length_s",
|
210 |
+
type=float,
|
211 |
+
default=None,
|
212 |
+
help="Chunk length in seconds. Defaults to 5 seconds.",
|
213 |
+
)
|
214 |
+
parser.add_argument(
|
215 |
+
"--stride_length_s",
|
216 |
+
type=float,
|
217 |
+
default=None,
|
218 |
+
help="Stride of the audio chunks. Defaults to 1 second.",
|
219 |
+
)
|
220 |
+
parser.add_argument(
|
221 |
+
"--log_outputs",
|
222 |
+
action="store_true",
|
223 |
+
help="If defined, write outputs to log file for analysis.",
|
224 |
+
)
|
225 |
+
parser.add_argument(
|
226 |
+
"--ctcdecode",
|
227 |
+
action="store_true",
|
228 |
+
help="Apply the ctc decoder to the output (only if present in the model card).",
|
229 |
+
)
|
230 |
+
parser.add_argument(
|
231 |
+
"--device",
|
232 |
+
type=int,
|
233 |
+
default=None,
|
234 |
+
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
|
235 |
+
)
|
236 |
+
parser.add_argument(
|
237 |
+
"--beam_width",
|
238 |
+
type=int,
|
239 |
+
default=1,
|
240 |
+
help="Beam width used by the pyctc decoder.",
|
241 |
+
)
|
242 |
+
args = parser.parse_args()
|
243 |
+
|
244 |
+
main(args)
|