Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +725 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +44 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: dbourget/pb-small-10e-tsdae6e-philsim-cosine-3e-pt1
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- cosine_accuracy
|
6 |
+
- dot_accuracy
|
7 |
+
- manhattan_accuracy
|
8 |
+
- euclidean_accuracy
|
9 |
+
- max_accuracy
|
10 |
+
pipeline_tag: sentence-similarity
|
11 |
+
tags:
|
12 |
+
- sentence-transformers
|
13 |
+
- sentence-similarity
|
14 |
+
- feature-extraction
|
15 |
+
- generated_from_trainer
|
16 |
+
- dataset_size:9504
|
17 |
+
- loss:TripletLoss
|
18 |
+
widget:
|
19 |
+
- source_sentence: cap product
|
20 |
+
sentences:
|
21 |
+
- method of adjoining a chain of degree p with a co-chain of degree q, where q is
|
22 |
+
less than or equal to p, to form a composite chain of degree p-q
|
23 |
+
- 'Ontology '
|
24 |
+
- hat commodity
|
25 |
+
- source_sentence: cognitivism
|
26 |
+
sentences:
|
27 |
+
- supporting cognitive science
|
28 |
+
- study of changes in organisms caused by modification of gene expression rather
|
29 |
+
than alteration of the genetic code
|
30 |
+
- 'the idea that mind works like an algorithmic symbol manipulation '
|
31 |
+
- source_sentence: doxastic voluntarism
|
32 |
+
sentences:
|
33 |
+
- Land surrounded by water
|
34 |
+
- belief one is free
|
35 |
+
- the ability to will beliefs
|
36 |
+
- source_sentence: conceptual role
|
37 |
+
sentences:
|
38 |
+
- concept
|
39 |
+
- inferential role
|
40 |
+
- 'Theory of knowledge '
|
41 |
+
- source_sentence: scientific revolutions
|
42 |
+
sentences:
|
43 |
+
- scientific realism
|
44 |
+
- Universal moral principles govern legal systems
|
45 |
+
- paradigm shifts
|
46 |
+
model-index:
|
47 |
+
- name: SentenceTransformer based on dbourget/pb-small-10e-tsdae6e-philsim-cosine-3e-pt1
|
48 |
+
results:
|
49 |
+
- task:
|
50 |
+
type: triplet
|
51 |
+
name: Triplet
|
52 |
+
dataset:
|
53 |
+
name: beatai dev
|
54 |
+
type: beatai-dev
|
55 |
+
metrics:
|
56 |
+
- type: cosine_accuracy
|
57 |
+
value: 0.7929292929292929
|
58 |
+
name: Cosine Accuracy
|
59 |
+
- type: dot_accuracy
|
60 |
+
value: 0.2542087542087542
|
61 |
+
name: Dot Accuracy
|
62 |
+
- type: manhattan_accuracy
|
63 |
+
value: 0.8021885521885522
|
64 |
+
name: Manhattan Accuracy
|
65 |
+
- type: euclidean_accuracy
|
66 |
+
value: 0.8013468013468014
|
67 |
+
name: Euclidean Accuracy
|
68 |
+
- type: max_accuracy
|
69 |
+
value: 0.8021885521885522
|
70 |
+
name: Max Accuracy
|
71 |
+
---
|
72 |
+
|
73 |
+
# SentenceTransformer based on dbourget/pb-small-10e-tsdae6e-philsim-cosine-3e-pt1
|
74 |
+
|
75 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [dbourget/pb-small-10e-tsdae6e-philsim-cosine-3e-pt1](https://huggingface.co/dbourget/pb-small-10e-tsdae6e-philsim-cosine-3e-pt1). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
76 |
+
|
77 |
+
## Model Details
|
78 |
+
|
79 |
+
### Model Description
|
80 |
+
- **Model Type:** Sentence Transformer
|
81 |
+
- **Base model:** [dbourget/pb-small-10e-tsdae6e-philsim-cosine-3e-pt1](https://huggingface.co/dbourget/pb-small-10e-tsdae6e-philsim-cosine-3e-pt1) <!-- at revision e3be09e156ca8e2b7b4e5d296fc50a316393eda3 -->
|
82 |
+
- **Maximum Sequence Length:** 512 tokens
|
83 |
+
- **Output Dimensionality:** 1024 tokens
|
84 |
+
- **Similarity Function:** Cosine Similarity
|
85 |
+
<!-- - **Training Dataset:** Unknown -->
|
86 |
+
<!-- - **Language:** Unknown -->
|
87 |
+
<!-- - **License:** Unknown -->
|
88 |
+
|
89 |
+
### Model Sources
|
90 |
+
|
91 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
92 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
93 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
94 |
+
|
95 |
+
### Full Model Architecture
|
96 |
+
|
97 |
+
```
|
98 |
+
SentenceTransformer(
|
99 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
100 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
101 |
+
)
|
102 |
+
```
|
103 |
+
|
104 |
+
## Usage
|
105 |
+
|
106 |
+
### Direct Usage (Sentence Transformers)
|
107 |
+
|
108 |
+
First install the Sentence Transformers library:
|
109 |
+
|
110 |
+
```bash
|
111 |
+
pip install -U sentence-transformers
|
112 |
+
```
|
113 |
+
|
114 |
+
Then you can load this model and run inference.
|
115 |
+
```python
|
116 |
+
from sentence_transformers import SentenceTransformer
|
117 |
+
|
118 |
+
# Download from the 🤗 Hub
|
119 |
+
model = SentenceTransformer("dbourget/pb-small-10e-tsdae6e-philsim-cosine-6e-beatai-cosine-50e")
|
120 |
+
# Run inference
|
121 |
+
sentences = [
|
122 |
+
'scientific revolutions',
|
123 |
+
'paradigm shifts',
|
124 |
+
'scientific realism',
|
125 |
+
]
|
126 |
+
embeddings = model.encode(sentences)
|
127 |
+
print(embeddings.shape)
|
128 |
+
# [3, 1024]
|
129 |
+
|
130 |
+
# Get the similarity scores for the embeddings
|
131 |
+
similarities = model.similarity(embeddings, embeddings)
|
132 |
+
print(similarities.shape)
|
133 |
+
# [3, 3]
|
134 |
+
```
|
135 |
+
|
136 |
+
<!--
|
137 |
+
### Direct Usage (Transformers)
|
138 |
+
|
139 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
140 |
+
|
141 |
+
</details>
|
142 |
+
-->
|
143 |
+
|
144 |
+
<!--
|
145 |
+
### Downstream Usage (Sentence Transformers)
|
146 |
+
|
147 |
+
You can finetune this model on your own dataset.
|
148 |
+
|
149 |
+
<details><summary>Click to expand</summary>
|
150 |
+
|
151 |
+
</details>
|
152 |
+
-->
|
153 |
+
|
154 |
+
<!--
|
155 |
+
### Out-of-Scope Use
|
156 |
+
|
157 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
158 |
+
-->
|
159 |
+
|
160 |
+
## Evaluation
|
161 |
+
|
162 |
+
### Metrics
|
163 |
+
|
164 |
+
#### Triplet
|
165 |
+
* Dataset: `beatai-dev`
|
166 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
167 |
+
|
168 |
+
| Metric | Value |
|
169 |
+
|:--------------------|:-----------|
|
170 |
+
| **cosine_accuracy** | **0.7929** |
|
171 |
+
| dot_accuracy | 0.2542 |
|
172 |
+
| manhattan_accuracy | 0.8022 |
|
173 |
+
| euclidean_accuracy | 0.8013 |
|
174 |
+
| max_accuracy | 0.8022 |
|
175 |
+
|
176 |
+
<!--
|
177 |
+
## Bias, Risks and Limitations
|
178 |
+
|
179 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
180 |
+
-->
|
181 |
+
|
182 |
+
<!--
|
183 |
+
### Recommendations
|
184 |
+
|
185 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
186 |
+
-->
|
187 |
+
|
188 |
+
## Training Details
|
189 |
+
|
190 |
+
### Training Hyperparameters
|
191 |
+
#### Non-Default Hyperparameters
|
192 |
+
|
193 |
+
- `eval_strategy`: steps
|
194 |
+
- `per_device_train_batch_size`: 138
|
195 |
+
- `per_device_eval_batch_size`: 138
|
196 |
+
- `learning_rate`: 5e-07
|
197 |
+
- `weight_decay`: 0.01
|
198 |
+
- `num_train_epochs`: 50
|
199 |
+
- `lr_scheduler_type`: constant
|
200 |
+
- `bf16`: True
|
201 |
+
- `dataloader_drop_last`: True
|
202 |
+
- `resume_from_checkpoint`: True
|
203 |
+
|
204 |
+
#### All Hyperparameters
|
205 |
+
<details><summary>Click to expand</summary>
|
206 |
+
|
207 |
+
- `overwrite_output_dir`: False
|
208 |
+
- `do_predict`: False
|
209 |
+
- `eval_strategy`: steps
|
210 |
+
- `prediction_loss_only`: True
|
211 |
+
- `per_device_train_batch_size`: 138
|
212 |
+
- `per_device_eval_batch_size`: 138
|
213 |
+
- `per_gpu_train_batch_size`: None
|
214 |
+
- `per_gpu_eval_batch_size`: None
|
215 |
+
- `gradient_accumulation_steps`: 1
|
216 |
+
- `eval_accumulation_steps`: None
|
217 |
+
- `torch_empty_cache_steps`: None
|
218 |
+
- `learning_rate`: 5e-07
|
219 |
+
- `weight_decay`: 0.01
|
220 |
+
- `adam_beta1`: 0.9
|
221 |
+
- `adam_beta2`: 0.999
|
222 |
+
- `adam_epsilon`: 1e-08
|
223 |
+
- `max_grad_norm`: 1.0
|
224 |
+
- `num_train_epochs`: 50
|
225 |
+
- `max_steps`: -1
|
226 |
+
- `lr_scheduler_type`: constant
|
227 |
+
- `lr_scheduler_kwargs`: {}
|
228 |
+
- `warmup_ratio`: 0
|
229 |
+
- `warmup_steps`: 0
|
230 |
+
- `log_level`: passive
|
231 |
+
- `log_level_replica`: warning
|
232 |
+
- `log_on_each_node`: True
|
233 |
+
- `logging_nan_inf_filter`: True
|
234 |
+
- `save_safetensors`: True
|
235 |
+
- `save_on_each_node`: False
|
236 |
+
- `save_only_model`: False
|
237 |
+
- `restore_callback_states_from_checkpoint`: False
|
238 |
+
- `no_cuda`: False
|
239 |
+
- `use_cpu`: False
|
240 |
+
- `use_mps_device`: False
|
241 |
+
- `seed`: 42
|
242 |
+
- `data_seed`: None
|
243 |
+
- `jit_mode_eval`: False
|
244 |
+
- `use_ipex`: False
|
245 |
+
- `bf16`: True
|
246 |
+
- `fp16`: False
|
247 |
+
- `fp16_opt_level`: O1
|
248 |
+
- `half_precision_backend`: auto
|
249 |
+
- `bf16_full_eval`: False
|
250 |
+
- `fp16_full_eval`: False
|
251 |
+
- `tf32`: None
|
252 |
+
- `local_rank`: 0
|
253 |
+
- `ddp_backend`: None
|
254 |
+
- `tpu_num_cores`: None
|
255 |
+
- `tpu_metrics_debug`: False
|
256 |
+
- `debug`: []
|
257 |
+
- `dataloader_drop_last`: True
|
258 |
+
- `dataloader_num_workers`: 0
|
259 |
+
- `dataloader_prefetch_factor`: 2
|
260 |
+
- `past_index`: -1
|
261 |
+
- `disable_tqdm`: False
|
262 |
+
- `remove_unused_columns`: True
|
263 |
+
- `label_names`: None
|
264 |
+
- `load_best_model_at_end`: False
|
265 |
+
- `ignore_data_skip`: False
|
266 |
+
- `fsdp`: []
|
267 |
+
- `fsdp_min_num_params`: 0
|
268 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
269 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
270 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
271 |
+
- `deepspeed`: None
|
272 |
+
- `label_smoothing_factor`: 0.0
|
273 |
+
- `optim`: adamw_torch
|
274 |
+
- `optim_args`: None
|
275 |
+
- `adafactor`: False
|
276 |
+
- `group_by_length`: False
|
277 |
+
- `length_column_name`: length
|
278 |
+
- `ddp_find_unused_parameters`: None
|
279 |
+
- `ddp_bucket_cap_mb`: None
|
280 |
+
- `ddp_broadcast_buffers`: False
|
281 |
+
- `dataloader_pin_memory`: True
|
282 |
+
- `dataloader_persistent_workers`: False
|
283 |
+
- `skip_memory_metrics`: True
|
284 |
+
- `use_legacy_prediction_loop`: False
|
285 |
+
- `push_to_hub`: False
|
286 |
+
- `resume_from_checkpoint`: True
|
287 |
+
- `hub_model_id`: None
|
288 |
+
- `hub_strategy`: every_save
|
289 |
+
- `hub_private_repo`: False
|
290 |
+
- `hub_always_push`: False
|
291 |
+
- `gradient_checkpointing`: False
|
292 |
+
- `gradient_checkpointing_kwargs`: None
|
293 |
+
- `include_inputs_for_metrics`: False
|
294 |
+
- `eval_do_concat_batches`: True
|
295 |
+
- `fp16_backend`: auto
|
296 |
+
- `push_to_hub_model_id`: None
|
297 |
+
- `push_to_hub_organization`: None
|
298 |
+
- `mp_parameters`:
|
299 |
+
- `auto_find_batch_size`: False
|
300 |
+
- `full_determinism`: False
|
301 |
+
- `torchdynamo`: None
|
302 |
+
- `ray_scope`: last
|
303 |
+
- `ddp_timeout`: 1800
|
304 |
+
- `torch_compile`: False
|
305 |
+
- `torch_compile_backend`: None
|
306 |
+
- `torch_compile_mode`: None
|
307 |
+
- `dispatch_batches`: None
|
308 |
+
- `split_batches`: None
|
309 |
+
- `include_tokens_per_second`: False
|
310 |
+
- `include_num_input_tokens_seen`: False
|
311 |
+
- `neftune_noise_alpha`: None
|
312 |
+
- `optim_target_modules`: None
|
313 |
+
- `batch_eval_metrics`: False
|
314 |
+
- `eval_on_start`: False
|
315 |
+
- `use_liger_kernel`: False
|
316 |
+
- `eval_use_gather_object`: False
|
317 |
+
- `batch_sampler`: batch_sampler
|
318 |
+
- `multi_dataset_batch_sampler`: proportional
|
319 |
+
|
320 |
+
</details>
|
321 |
+
|
322 |
+
### Training Logs
|
323 |
+
<details><summary>Click to expand</summary>
|
324 |
+
|
325 |
+
| Epoch | Step | Training Loss | loss | beatai-dev_cosine_accuracy |
|
326 |
+
|:-------:|:----:|:-------------:|:------:|:--------------------------:|
|
327 |
+
| 0 | 0 | - | - | 0.4764 |
|
328 |
+
| 0.1471 | 10 | 0.2061 | - | - |
|
329 |
+
| 0.2941 | 20 | 0.2048 | - | - |
|
330 |
+
| 0.4412 | 30 | 0.204 | - | - |
|
331 |
+
| 0.5882 | 40 | 0.202 | - | - |
|
332 |
+
| 0.7353 | 50 | 0.2019 | 0.2010 | 0.5219 |
|
333 |
+
| 0.8824 | 60 | 0.2017 | - | - |
|
334 |
+
| 1.0294 | 70 | 0.1954 | - | - |
|
335 |
+
| 1.1765 | 80 | 0.1959 | - | - |
|
336 |
+
| 1.3235 | 90 | 0.1941 | - | - |
|
337 |
+
| 1.4706 | 100 | 0.1937 | 0.1929 | 0.5598 |
|
338 |
+
| 1.6176 | 110 | 0.1923 | - | - |
|
339 |
+
| 1.7647 | 120 | 0.1893 | - | - |
|
340 |
+
| 1.9118 | 130 | 0.1861 | - | - |
|
341 |
+
| 2.0588 | 140 | 0.1842 | - | - |
|
342 |
+
| 2.2059 | 150 | 0.1818 | 0.1814 | 0.5985 |
|
343 |
+
| 2.3529 | 160 | 0.1834 | - | - |
|
344 |
+
| 2.5 | 170 | 0.1729 | - | - |
|
345 |
+
| 2.6471 | 180 | 0.1726 | - | - |
|
346 |
+
| 2.7941 | 190 | 0.1668 | - | - |
|
347 |
+
| 2.9412 | 200 | 0.1622 | 0.1653 | 0.6330 |
|
348 |
+
| 3.0882 | 210 | 0.1604 | - | - |
|
349 |
+
| 3.2353 | 220 | 0.1572 | - | - |
|
350 |
+
| 3.3824 | 230 | 0.159 | - | - |
|
351 |
+
| 3.5294 | 240 | 0.1567 | - | - |
|
352 |
+
| 3.6765 | 250 | 0.1481 | 0.1562 | 0.6532 |
|
353 |
+
| 3.8235 | 260 | 0.148 | - | - |
|
354 |
+
| 3.9706 | 270 | 0.1492 | - | - |
|
355 |
+
| 4.1176 | 280 | 0.1528 | - | - |
|
356 |
+
| 4.2647 | 290 | 0.1437 | - | - |
|
357 |
+
| 4.4118 | 300 | 0.1481 | 0.1490 | 0.6658 |
|
358 |
+
| 4.5588 | 310 | 0.1386 | - | - |
|
359 |
+
| 4.7059 | 320 | 0.1413 | - | - |
|
360 |
+
| 4.8529 | 330 | 0.1407 | - | - |
|
361 |
+
| 5.0 | 340 | 0.1387 | - | - |
|
362 |
+
| 5.1471 | 350 | 0.1423 | 0.1438 | 0.6717 |
|
363 |
+
| 5.2941 | 360 | 0.1376 | - | - |
|
364 |
+
| 5.4412 | 370 | 0.1314 | - | - |
|
365 |
+
| 5.5882 | 380 | 0.1416 | - | - |
|
366 |
+
| 5.7353 | 390 | 0.1284 | - | - |
|
367 |
+
| 5.8824 | 400 | 0.1375 | 0.1394 | 0.6801 |
|
368 |
+
| 6.0294 | 410 | 0.1308 | - | - |
|
369 |
+
| 6.1765 | 420 | 0.1286 | - | - |
|
370 |
+
| 6.3235 | 430 | 0.1326 | - | - |
|
371 |
+
| 6.4706 | 440 | 0.1356 | - | - |
|
372 |
+
| 6.6176 | 450 | 0.1298 | 0.1361 | 0.6877 |
|
373 |
+
| 6.7647 | 460 | 0.1242 | - | - |
|
374 |
+
| 6.9118 | 470 | 0.1299 | - | - |
|
375 |
+
| 7.0588 | 480 | 0.1279 | - | - |
|
376 |
+
| 7.2059 | 490 | 0.1234 | - | - |
|
377 |
+
| 7.3529 | 500 | 0.1298 | 0.1333 | 0.7045 |
|
378 |
+
| 7.5 | 510 | 0.1252 | - | - |
|
379 |
+
| 7.6471 | 520 | 0.1248 | - | - |
|
380 |
+
| 7.7941 | 530 | 0.1241 | - | - |
|
381 |
+
| 7.9412 | 540 | 0.126 | - | - |
|
382 |
+
| 8.0882 | 550 | 0.1252 | 0.1316 | 0.7071 |
|
383 |
+
| 8.2353 | 560 | 0.1237 | - | - |
|
384 |
+
| 8.3824 | 570 | 0.1205 | - | - |
|
385 |
+
| 8.5294 | 580 | 0.1195 | - | - |
|
386 |
+
| 8.6765 | 590 | 0.1187 | - | - |
|
387 |
+
| 8.8235 | 600 | 0.1187 | 0.1293 | 0.7138 |
|
388 |
+
| 8.9706 | 610 | 0.1269 | - | - |
|
389 |
+
| 9.1176 | 620 | 0.1261 | - | - |
|
390 |
+
| 9.2647 | 630 | 0.1182 | - | - |
|
391 |
+
| 9.4118 | 640 | 0.1219 | - | - |
|
392 |
+
| 9.5588 | 650 | 0.1173 | 0.1276 | 0.7172 |
|
393 |
+
| 9.7059 | 660 | 0.1182 | - | - |
|
394 |
+
| 9.8529 | 670 | 0.122 | - | - |
|
395 |
+
| 10.0 | 680 | 0.1179 | - | - |
|
396 |
+
| 10.1471 | 690 | 0.1137 | - | - |
|
397 |
+
| 10.2941 | 700 | 0.1248 | 0.1261 | 0.7247 |
|
398 |
+
| 10.4412 | 710 | 0.1162 | - | - |
|
399 |
+
| 10.5882 | 720 | 0.1166 | - | - |
|
400 |
+
| 10.7353 | 730 | 0.1111 | - | - |
|
401 |
+
| 10.8824 | 740 | 0.115 | - | - |
|
402 |
+
| 11.0294 | 750 | 0.1175 | 0.1247 | 0.7298 |
|
403 |
+
| 11.1765 | 760 | 0.1136 | - | - |
|
404 |
+
| 11.3235 | 770 | 0.1172 | - | - |
|
405 |
+
| 11.4706 | 780 | 0.1158 | - | - |
|
406 |
+
| 11.6176 | 790 | 0.1142 | - | - |
|
407 |
+
| 11.7647 | 800 | 0.1097 | 0.1236 | 0.7332 |
|
408 |
+
| 11.9118 | 810 | 0.1161 | - | - |
|
409 |
+
| 12.0588 | 820 | 0.1153 | - | - |
|
410 |
+
| 12.2059 | 830 | 0.1114 | - | - |
|
411 |
+
| 12.3529 | 840 | 0.1133 | - | - |
|
412 |
+
| 12.5 | 850 | 0.1104 | 0.1226 | 0.7332 |
|
413 |
+
| 12.6471 | 860 | 0.1093 | - | - |
|
414 |
+
| 12.7941 | 870 | 0.1157 | - | - |
|
415 |
+
| 12.9412 | 880 | 0.1127 | - | - |
|
416 |
+
| 13.0882 | 890 | 0.1115 | - | - |
|
417 |
+
| 13.2353 | 900 | 0.1109 | 0.1214 | 0.7323 |
|
418 |
+
| 13.3824 | 910 | 0.1125 | - | - |
|
419 |
+
| 13.5294 | 920 | 0.1097 | - | - |
|
420 |
+
| 13.6765 | 930 | 0.1124 | - | - |
|
421 |
+
| 13.8235 | 940 | 0.114 | - | - |
|
422 |
+
| 13.9706 | 950 | 0.11 | 0.1204 | 0.7382 |
|
423 |
+
| 14.1176 | 960 | 0.1049 | - | - |
|
424 |
+
| 14.2647 | 970 | 0.1128 | - | - |
|
425 |
+
| 14.4118 | 980 | 0.1109 | - | - |
|
426 |
+
| 14.5588 | 990 | 0.1087 | - | - |
|
427 |
+
| 14.7059 | 1000 | 0.1079 | 0.1196 | 0.7382 |
|
428 |
+
| 14.8529 | 1010 | 0.1077 | - | - |
|
429 |
+
| 15.0 | 1020 | 0.1061 | - | - |
|
430 |
+
| 15.1471 | 1030 | 0.1101 | - | - |
|
431 |
+
| 15.2941 | 1040 | 0.1087 | - | - |
|
432 |
+
| 15.4412 | 1050 | 0.106 | 0.1186 | 0.7399 |
|
433 |
+
| 15.5882 | 1060 | 0.1047 | - | - |
|
434 |
+
| 15.7353 | 1070 | 0.1048 | - | - |
|
435 |
+
| 15.8824 | 1080 | 0.103 | - | - |
|
436 |
+
| 16.0294 | 1090 | 0.1064 | - | - |
|
437 |
+
| 16.1765 | 1100 | 0.1029 | 0.1179 | 0.7433 |
|
438 |
+
| 16.3235 | 1110 | 0.1033 | - | - |
|
439 |
+
| 16.4706 | 1120 | 0.1066 | - | - |
|
440 |
+
| 16.6176 | 1130 | 0.1095 | - | - |
|
441 |
+
| 16.7647 | 1140 | 0.1031 | - | - |
|
442 |
+
| 16.9118 | 1150 | 0.1 | 0.1172 | 0.7466 |
|
443 |
+
| 17.0588 | 1160 | 0.1056 | - | - |
|
444 |
+
| 17.2059 | 1170 | 0.1033 | - | - |
|
445 |
+
| 17.3529 | 1180 | 0.102 | - | - |
|
446 |
+
| 17.5 | 1190 | 0.1083 | - | - |
|
447 |
+
| 17.6471 | 1200 | 0.0971 | 0.1164 | 0.7458 |
|
448 |
+
| 17.7941 | 1210 | 0.1016 | - | - |
|
449 |
+
| 17.9412 | 1220 | 0.1033 | - | - |
|
450 |
+
| 18.0882 | 1230 | 0.0987 | - | - |
|
451 |
+
| 18.2353 | 1240 | 0.1062 | - | - |
|
452 |
+
| 18.3824 | 1250 | 0.0925 | 0.1157 | 0.7475 |
|
453 |
+
| 18.5294 | 1260 | 0.1028 | - | - |
|
454 |
+
| 18.6765 | 1270 | 0.1012 | - | - |
|
455 |
+
| 18.8235 | 1280 | 0.1027 | - | - |
|
456 |
+
| 18.9706 | 1290 | 0.1026 | - | - |
|
457 |
+
| 19.1176 | 1300 | 0.1023 | 0.1148 | 0.7508 |
|
458 |
+
| 19.2647 | 1310 | 0.1053 | - | - |
|
459 |
+
| 19.4118 | 1320 | 0.0981 | - | - |
|
460 |
+
| 19.5588 | 1330 | 0.0975 | - | - |
|
461 |
+
| 19.7059 | 1340 | 0.1006 | - | - |
|
462 |
+
| 19.8529 | 1350 | 0.0991 | 0.1141 | 0.7508 |
|
463 |
+
| 20.0 | 1360 | 0.0994 | - | - |
|
464 |
+
| 20.1471 | 1370 | 0.0998 | - | - |
|
465 |
+
| 20.2941 | 1380 | 0.1014 | - | - |
|
466 |
+
| 20.4412 | 1390 | 0.0986 | - | - |
|
467 |
+
| 20.5882 | 1400 | 0.098 | 0.1133 | 0.7525 |
|
468 |
+
| 20.7353 | 1410 | 0.101 | - | - |
|
469 |
+
| 20.8824 | 1420 | 0.098 | - | - |
|
470 |
+
| 21.0294 | 1430 | 0.1041 | - | - |
|
471 |
+
| 21.1765 | 1440 | 0.0979 | - | - |
|
472 |
+
| 21.3235 | 1450 | 0.1006 | 0.1126 | 0.7559 |
|
473 |
+
| 21.4706 | 1460 | 0.097 | - | - |
|
474 |
+
| 21.6176 | 1470 | 0.0985 | - | - |
|
475 |
+
| 21.7647 | 1480 | 0.0956 | - | - |
|
476 |
+
| 21.9118 | 1490 | 0.0993 | - | - |
|
477 |
+
| 22.0588 | 1500 | 0.0943 | 0.1120 | 0.7551 |
|
478 |
+
| 22.2059 | 1510 | 0.0977 | - | - |
|
479 |
+
| 22.3529 | 1520 | 0.0998 | - | - |
|
480 |
+
| 22.5 | 1530 | 0.0977 | - | - |
|
481 |
+
| 22.6471 | 1540 | 0.099 | - | - |
|
482 |
+
| 22.7941 | 1550 | 0.0925 | 0.1113 | 0.7576 |
|
483 |
+
| 22.9412 | 1560 | 0.0929 | - | - |
|
484 |
+
| 23.0882 | 1570 | 0.0965 | - | - |
|
485 |
+
| 23.2353 | 1580 | 0.0896 | - | - |
|
486 |
+
| 23.3824 | 1590 | 0.0993 | - | - |
|
487 |
+
| 23.5294 | 1600 | 0.0941 | 0.1109 | 0.7576 |
|
488 |
+
| 23.6765 | 1610 | 0.0927 | - | - |
|
489 |
+
| 23.8235 | 1620 | 0.0994 | - | - |
|
490 |
+
| 23.9706 | 1630 | 0.0956 | - | - |
|
491 |
+
| 24.1176 | 1640 | 0.0947 | - | - |
|
492 |
+
| 24.2647 | 1650 | 0.0927 | 0.1103 | 0.7576 |
|
493 |
+
| 24.4118 | 1660 | 0.0935 | - | - |
|
494 |
+
| 24.5588 | 1670 | 0.0996 | - | - |
|
495 |
+
| 24.7059 | 1680 | 0.0903 | - | - |
|
496 |
+
| 24.8529 | 1690 | 0.0916 | - | - |
|
497 |
+
| 25.0 | 1700 | 0.0951 | 0.1096 | 0.7584 |
|
498 |
+
| 25.1471 | 1710 | 0.0924 | - | - |
|
499 |
+
| 25.2941 | 1720 | 0.0952 | - | - |
|
500 |
+
| 25.4412 | 1730 | 0.0954 | - | - |
|
501 |
+
| 25.5882 | 1740 | 0.0968 | - | - |
|
502 |
+
| 25.7353 | 1750 | 0.0942 | 0.1090 | 0.7593 |
|
503 |
+
| 25.8824 | 1760 | 0.0913 | - | - |
|
504 |
+
| 26.0294 | 1770 | 0.0931 | - | - |
|
505 |
+
| 26.1765 | 1780 | 0.0872 | - | - |
|
506 |
+
| 26.3235 | 1790 | 0.0915 | - | - |
|
507 |
+
| 26.4706 | 1800 | 0.0937 | 0.1085 | 0.7601 |
|
508 |
+
| 26.6176 | 1810 | 0.0971 | - | - |
|
509 |
+
| 26.7647 | 1820 | 0.0944 | - | - |
|
510 |
+
| 26.9118 | 1830 | 0.0908 | - | - |
|
511 |
+
| 27.0588 | 1840 | 0.089 | - | - |
|
512 |
+
| 27.2059 | 1850 | 0.0944 | 0.1082 | 0.7626 |
|
513 |
+
| 27.3529 | 1860 | 0.0926 | - | - |
|
514 |
+
| 27.5 | 1870 | 0.087 | - | - |
|
515 |
+
| 27.6471 | 1880 | 0.0904 | - | - |
|
516 |
+
| 27.7941 | 1890 | 0.0886 | - | - |
|
517 |
+
| 27.9412 | 1900 | 0.0942 | 0.1077 | 0.7635 |
|
518 |
+
| 28.0882 | 1910 | 0.0947 | - | - |
|
519 |
+
| 28.2353 | 1920 | 0.0857 | - | - |
|
520 |
+
| 28.3824 | 1930 | 0.0908 | - | - |
|
521 |
+
| 28.5294 | 1940 | 0.0943 | - | - |
|
522 |
+
| 28.6765 | 1950 | 0.0902 | 0.1071 | 0.7668 |
|
523 |
+
| 28.8235 | 1960 | 0.0909 | - | - |
|
524 |
+
| 28.9706 | 1970 | 0.0897 | - | - |
|
525 |
+
| 29.1176 | 1980 | 0.0924 | - | - |
|
526 |
+
| 29.2647 | 1990 | 0.0909 | - | - |
|
527 |
+
| 29.4118 | 2000 | 0.0895 | 0.1066 | 0.7652 |
|
528 |
+
| 29.5588 | 2010 | 0.0832 | - | - |
|
529 |
+
| 29.7059 | 2020 | 0.0883 | - | - |
|
530 |
+
| 29.8529 | 2030 | 0.0935 | - | - |
|
531 |
+
| 30.0 | 2040 | 0.09 | - | - |
|
532 |
+
| 30.1471 | 2050 | 0.0891 | 0.1060 | 0.7677 |
|
533 |
+
| 30.2941 | 2060 | 0.0978 | - | - |
|
534 |
+
| 30.4412 | 2070 | 0.0894 | - | - |
|
535 |
+
| 30.5882 | 2080 | 0.0893 | - | - |
|
536 |
+
| 30.7353 | 2090 | 0.0815 | - | - |
|
537 |
+
| 30.8824 | 2100 | 0.0889 | 0.1058 | 0.7660 |
|
538 |
+
| 31.0294 | 2110 | 0.0801 | - | - |
|
539 |
+
| 31.1765 | 2120 | 0.0922 | - | - |
|
540 |
+
| 31.3235 | 2130 | 0.0868 | - | - |
|
541 |
+
| 31.4706 | 2140 | 0.0858 | - | - |
|
542 |
+
| 31.6176 | 2150 | 0.0862 | 0.1055 | 0.7685 |
|
543 |
+
| 31.7647 | 2160 | 0.0861 | - | - |
|
544 |
+
| 31.9118 | 2170 | 0.0896 | - | - |
|
545 |
+
| 32.0588 | 2180 | 0.0877 | - | - |
|
546 |
+
| 32.2059 | 2190 | 0.0864 | - | - |
|
547 |
+
| 32.3529 | 2200 | 0.0921 | 0.1050 | 0.7694 |
|
548 |
+
| 32.5 | 2210 | 0.082 | - | - |
|
549 |
+
| 32.6471 | 2220 | 0.0902 | - | - |
|
550 |
+
| 32.7941 | 2230 | 0.0825 | - | - |
|
551 |
+
| 32.9412 | 2240 | 0.0829 | - | - |
|
552 |
+
| 33.0882 | 2250 | 0.0859 | 0.1046 | 0.7694 |
|
553 |
+
| 33.2353 | 2260 | 0.0847 | - | - |
|
554 |
+
| 33.3824 | 2270 | 0.0829 | - | - |
|
555 |
+
| 33.5294 | 2280 | 0.0841 | - | - |
|
556 |
+
| 33.6765 | 2290 | 0.0833 | - | - |
|
557 |
+
| 33.8235 | 2300 | 0.0899 | 0.1042 | 0.7710 |
|
558 |
+
| 33.9706 | 2310 | 0.0789 | - | - |
|
559 |
+
| 34.1176 | 2320 | 0.0809 | - | - |
|
560 |
+
| 34.2647 | 2330 | 0.0835 | - | - |
|
561 |
+
| 34.4118 | 2340 | 0.0816 | - | - |
|
562 |
+
| 34.5588 | 2350 | 0.0803 | 0.1038 | 0.7744 |
|
563 |
+
| 34.7059 | 2360 | 0.0808 | - | - |
|
564 |
+
| 34.8529 | 2370 | 0.0867 | - | - |
|
565 |
+
| 35.0 | 2380 | 0.0878 | - | - |
|
566 |
+
| 35.1471 | 2390 | 0.0869 | - | - |
|
567 |
+
| 35.2941 | 2400 | 0.0785 | 0.1034 | 0.7753 |
|
568 |
+
| 35.4412 | 2410 | 0.0849 | - | - |
|
569 |
+
| 35.5882 | 2420 | 0.0832 | - | - |
|
570 |
+
| 35.7353 | 2430 | 0.0799 | - | - |
|
571 |
+
| 35.8824 | 2440 | 0.0813 | - | - |
|
572 |
+
| 36.0294 | 2450 | 0.0801 | 0.1029 | 0.7753 |
|
573 |
+
| 36.1765 | 2460 | 0.0771 | - | - |
|
574 |
+
| 36.3235 | 2470 | 0.0828 | - | - |
|
575 |
+
| 36.4706 | 2480 | 0.0837 | - | - |
|
576 |
+
| 36.6176 | 2490 | 0.0774 | - | - |
|
577 |
+
| 36.7647 | 2500 | 0.0822 | 0.1026 | 0.7769 |
|
578 |
+
| 36.9118 | 2510 | 0.0845 | - | - |
|
579 |
+
| 37.0588 | 2520 | 0.0882 | - | - |
|
580 |
+
| 37.2059 | 2530 | 0.0802 | - | - |
|
581 |
+
| 37.3529 | 2540 | 0.0806 | - | - |
|
582 |
+
| 37.5 | 2550 | 0.0809 | 0.1022 | 0.7795 |
|
583 |
+
| 37.6471 | 2560 | 0.0806 | - | - |
|
584 |
+
| 37.7941 | 2570 | 0.0788 | - | - |
|
585 |
+
| 37.9412 | 2580 | 0.0858 | - | - |
|
586 |
+
| 38.0882 | 2590 | 0.0791 | - | - |
|
587 |
+
| 38.2353 | 2600 | 0.0842 | 0.1018 | 0.7795 |
|
588 |
+
| 38.3824 | 2610 | 0.0799 | - | - |
|
589 |
+
| 38.5294 | 2620 | 0.0769 | - | - |
|
590 |
+
| 38.6765 | 2630 | 0.0823 | - | - |
|
591 |
+
| 38.8235 | 2640 | 0.0784 | - | - |
|
592 |
+
| 38.9706 | 2650 | 0.0863 | 0.1016 | 0.7795 |
|
593 |
+
| 39.1176 | 2660 | 0.0751 | - | - |
|
594 |
+
| 39.2647 | 2670 | 0.0847 | - | - |
|
595 |
+
| 39.4118 | 2680 | 0.0784 | - | - |
|
596 |
+
| 39.5588 | 2690 | 0.0799 | - | - |
|
597 |
+
| 39.7059 | 2700 | 0.0771 | 0.1013 | 0.7811 |
|
598 |
+
| 39.8529 | 2710 | 0.0763 | - | - |
|
599 |
+
| 40.0 | 2720 | 0.0783 | - | - |
|
600 |
+
| 40.1471 | 2730 | 0.0784 | - | - |
|
601 |
+
| 40.2941 | 2740 | 0.0761 | - | - |
|
602 |
+
| 40.4412 | 2750 | 0.0797 | 0.1011 | 0.7837 |
|
603 |
+
| 40.5882 | 2760 | 0.0809 | - | - |
|
604 |
+
| 40.7353 | 2770 | 0.0758 | - | - |
|
605 |
+
| 40.8824 | 2780 | 0.0777 | - | - |
|
606 |
+
| 41.0294 | 2790 | 0.0777 | - | - |
|
607 |
+
| 41.1765 | 2800 | 0.0806 | 0.1006 | 0.7786 |
|
608 |
+
| 41.3235 | 2810 | 0.0852 | - | - |
|
609 |
+
| 41.4706 | 2820 | 0.079 | - | - |
|
610 |
+
| 41.6176 | 2830 | 0.0749 | - | - |
|
611 |
+
| 41.7647 | 2840 | 0.0805 | - | - |
|
612 |
+
| 41.9118 | 2850 | 0.0779 | 0.1003 | 0.7854 |
|
613 |
+
| 42.0588 | 2860 | 0.0759 | - | - |
|
614 |
+
| 42.2059 | 2870 | 0.0794 | - | - |
|
615 |
+
| 42.3529 | 2880 | 0.0811 | - | - |
|
616 |
+
| 42.5 | 2890 | 0.0772 | - | - |
|
617 |
+
| 42.6471 | 2900 | 0.0757 | 0.1001 | 0.7828 |
|
618 |
+
| 42.7941 | 2910 | 0.0781 | - | - |
|
619 |
+
| 42.9412 | 2920 | 0.0751 | - | - |
|
620 |
+
| 43.0882 | 2930 | 0.0752 | - | - |
|
621 |
+
| 43.2353 | 2940 | 0.079 | - | - |
|
622 |
+
| 43.3824 | 2950 | 0.076 | 0.0997 | 0.7811 |
|
623 |
+
| 43.5294 | 2960 | 0.0783 | - | - |
|
624 |
+
| 43.6765 | 2970 | 0.0774 | - | - |
|
625 |
+
| 43.8235 | 2980 | 0.07 | - | - |
|
626 |
+
| 43.9706 | 2990 | 0.073 | - | - |
|
627 |
+
| 44.1176 | 3000 | 0.0762 | 0.0993 | 0.7854 |
|
628 |
+
| 44.2647 | 3010 | 0.0749 | - | - |
|
629 |
+
| 44.4118 | 3020 | 0.0782 | - | - |
|
630 |
+
| 44.5588 | 3030 | 0.0764 | - | - |
|
631 |
+
| 44.7059 | 3040 | 0.0759 | - | - |
|
632 |
+
| 44.8529 | 3050 | 0.0769 | 0.0991 | 0.7887 |
|
633 |
+
| 45.0 | 3060 | 0.0754 | - | - |
|
634 |
+
| 45.1471 | 3070 | 0.0744 | - | - |
|
635 |
+
| 45.2941 | 3080 | 0.0767 | - | - |
|
636 |
+
| 45.4412 | 3090 | 0.0724 | - | - |
|
637 |
+
| 45.5882 | 3100 | 0.0742 | 0.0989 | 0.7870 |
|
638 |
+
| 45.7353 | 3110 | 0.0745 | - | - |
|
639 |
+
| 45.8824 | 3120 | 0.076 | - | - |
|
640 |
+
| 46.0294 | 3130 | 0.0666 | - | - |
|
641 |
+
| 46.1765 | 3140 | 0.0801 | - | - |
|
642 |
+
| 46.3235 | 3150 | 0.0734 | 0.0985 | 0.7887 |
|
643 |
+
| 46.4706 | 3160 | 0.0703 | - | - |
|
644 |
+
| 46.6176 | 3170 | 0.0772 | - | - |
|
645 |
+
| 46.7647 | 3180 | 0.0763 | - | - |
|
646 |
+
| 46.9118 | 3190 | 0.0718 | - | - |
|
647 |
+
| 47.0588 | 3200 | 0.0724 | 0.0981 | 0.7904 |
|
648 |
+
| 47.2059 | 3210 | 0.0755 | - | - |
|
649 |
+
| 47.3529 | 3220 | 0.0719 | - | - |
|
650 |
+
| 47.5 | 3230 | 0.0742 | - | - |
|
651 |
+
| 47.6471 | 3240 | 0.074 | - | - |
|
652 |
+
| 47.7941 | 3250 | 0.0758 | 0.0980 | 0.7921 |
|
653 |
+
| 47.9412 | 3260 | 0.0727 | - | - |
|
654 |
+
| 48.0882 | 3270 | 0.0676 | - | - |
|
655 |
+
| 48.2353 | 3280 | 0.0791 | - | - |
|
656 |
+
| 48.3824 | 3290 | 0.0751 | - | - |
|
657 |
+
| 48.5294 | 3300 | 0.075 | 0.0977 | 0.7887 |
|
658 |
+
| 48.6765 | 3310 | 0.0738 | - | - |
|
659 |
+
| 48.8235 | 3320 | 0.0689 | - | - |
|
660 |
+
| 48.9706 | 3330 | 0.0706 | - | - |
|
661 |
+
| 49.1176 | 3340 | 0.0671 | - | - |
|
662 |
+
| 49.2647 | 3350 | 0.0744 | 0.0974 | 0.7971 |
|
663 |
+
| 49.4118 | 3360 | 0.0739 | - | - |
|
664 |
+
| 49.5588 | 3370 | 0.0721 | - | - |
|
665 |
+
| 49.7059 | 3380 | 0.073 | - | - |
|
666 |
+
| 49.8529 | 3390 | 0.0707 | - | - |
|
667 |
+
| 50.0 | 3400 | 0.0689 | 0.0972 | 0.7929 |
|
668 |
+
|
669 |
+
</details>
|
670 |
+
|
671 |
+
### Framework Versions
|
672 |
+
- Python: 3.8.18
|
673 |
+
- Sentence Transformers: 3.1.1
|
674 |
+
- Transformers: 4.45.1
|
675 |
+
- PyTorch: 1.13.1+cu117
|
676 |
+
- Accelerate: 0.34.2
|
677 |
+
- Datasets: 3.0.0
|
678 |
+
- Tokenizers: 0.20.0
|
679 |
+
|
680 |
+
## Citation
|
681 |
+
|
682 |
+
### BibTeX
|
683 |
+
|
684 |
+
#### Sentence Transformers
|
685 |
+
```bibtex
|
686 |
+
@inproceedings{reimers-2019-sentence-bert,
|
687 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
688 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
689 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
690 |
+
month = "11",
|
691 |
+
year = "2019",
|
692 |
+
publisher = "Association for Computational Linguistics",
|
693 |
+
url = "https://arxiv.org/abs/1908.10084",
|
694 |
+
}
|
695 |
+
```
|
696 |
+
|
697 |
+
#### TripletLoss
|
698 |
+
```bibtex
|
699 |
+
@misc{hermans2017defense,
|
700 |
+
title={In Defense of the Triplet Loss for Person Re-Identification},
|
701 |
+
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
702 |
+
year={2017},
|
703 |
+
eprint={1703.07737},
|
704 |
+
archivePrefix={arXiv},
|
705 |
+
primaryClass={cs.CV}
|
706 |
+
}
|
707 |
+
```
|
708 |
+
|
709 |
+
<!--
|
710 |
+
## Glossary
|
711 |
+
|
712 |
+
*Clearly define terms in order to be accessible across audiences.*
|
713 |
+
-->
|
714 |
+
|
715 |
+
<!--
|
716 |
+
## Model Card Authors
|
717 |
+
|
718 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
719 |
+
-->
|
720 |
+
|
721 |
+
<!--
|
722 |
+
## Model Card Contact
|
723 |
+
|
724 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
725 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "dbourget/pb-small-10e-tsdae6e-philsim-cosine-3e-pt1",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.45.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.45.1",
|
5 |
+
"pytorch": "1.13.1+cu117"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a01319756c4c10f61d571b5f19638b81955c7c9eb42f0dd7356388a217fa78a
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"[PAD]",
|
4 |
+
"[UNK]",
|
5 |
+
"[CLS]",
|
6 |
+
"[SEP]",
|
7 |
+
"[MASK]"
|
8 |
+
],
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"mask_token": {
|
17 |
+
"content": "[MASK]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"pad_token": {
|
24 |
+
"content": "[PAD]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"sep_token": {
|
31 |
+
"content": "[SEP]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"unk_token": {
|
38 |
+
"content": "[UNK]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
}
|
44 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [
|
45 |
+
"[PAD]",
|
46 |
+
"[UNK]",
|
47 |
+
"[CLS]",
|
48 |
+
"[SEP]",
|
49 |
+
"[MASK]"
|
50 |
+
],
|
51 |
+
"clean_up_tokenization_spaces": true,
|
52 |
+
"cls_token": "[CLS]",
|
53 |
+
"mask_token": "[MASK]",
|
54 |
+
"max_length": 512,
|
55 |
+
"model_max_length": 512,
|
56 |
+
"pad_to_multiple_of": null,
|
57 |
+
"pad_token": "[PAD]",
|
58 |
+
"pad_token_type_id": 0,
|
59 |
+
"padding_side": "right",
|
60 |
+
"sep_token": "[SEP]",
|
61 |
+
"stride": 0,
|
62 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|