Update README.md
Browse files
README.md
CHANGED
@@ -31,7 +31,7 @@ Then you can use the model like this:
|
|
31 |
from sentence_transformers import SentenceTransformer
|
32 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
33 |
|
34 |
-
model = SentenceTransformer('dbourget/philai-
|
35 |
embeddings = model.encode(sentences)
|
36 |
print(embeddings)
|
37 |
```
|
@@ -54,8 +54,8 @@ def cls_pooling(model_output, attention_mask):
|
|
54 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained('dbourget/philai-
|
58 |
-
model = AutoModel.from_pretrained('dbourget/philai-
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -97,7 +97,7 @@ The model was trained with the parameters:
|
|
97 |
Parameters of the fit()-Method:
|
98 |
```
|
99 |
{
|
100 |
-
"epochs":
|
101 |
"evaluation_steps": 61476,
|
102 |
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
|
103 |
"max_grad_norm": 1,
|
|
|
31 |
from sentence_transformers import SentenceTransformer
|
32 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
33 |
|
34 |
+
model = SentenceTransformer('dbourget/philai-embeddings-v1.1')
|
35 |
embeddings = model.encode(sentences)
|
36 |
print(embeddings)
|
37 |
```
|
|
|
54 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained('dbourget/philai-embeddings-v1.1')
|
58 |
+
model = AutoModel.from_pretrained('dbourget/philai-embeddings-v1.1')
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
97 |
Parameters of the fit()-Method:
|
98 |
```
|
99 |
{
|
100 |
+
"epochs": 5,
|
101 |
"evaluation_steps": 61476,
|
102 |
"evaluator": "sentence_transformers.evaluation.TripletEvaluator.TripletEvaluator",
|
103 |
"max_grad_norm": 1,
|