dcfidalgo commited on
Commit
23945b5
·
1 Parent(s): d737217

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 252.50 +/- 17.83
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d96edfb8160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d96edfb81f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d96edfb8280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d96edfb8310>", "_build": "<function ActorCriticPolicy._build at 0x7d96edfb83a0>", "forward": "<function ActorCriticPolicy.forward at 0x7d96edfb8430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d96edfb84c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d96edfb8550>", "_predict": "<function ActorCriticPolicy._predict at 0x7d96edfb85e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d96edfb8670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d96edfb8700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d96edfb8790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d96edfb0640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698678271758134604, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3wCT5USqQ/Qj0WP+Ohk77NEh0+4merPgAAAAAAAAAAZqVGPRSIkbqyfTm7OQidtqOVATnKHVc6AACAPwAAgD+Giwg+TSSTP7asuz4PHqe+kxAWPloBrz0AAAAAAAAAAHOrrj0MmU8/QA18vOxgdL7ToUw9LysUPQAAAAAAAAAAZlmSPKT9oD/QNfK8FcmdvlJLHj3oWTo9AAAAAAAAAAAA/XI+FB4RP2rCpL27M4a+DzAMPf6Tt7sAAAAAAAAAAOZU0T32DFS6EDJ2t4Rk6bF+22262r2MNgAAAAAAAIA/ACg4PaI/lD5EDTa+f3CgvuVDz704Zyy9AAAAAAAAAABA1sW9V0sZPn4ajT1ECFu+DXQQvcUWLr0AAAAAAAAAAM0OQby2WkU9euwwPY5Vob4FRqi8NG2BPAAAAAAAAAAAzeQpvfYkb7ogTXK8lPLIPCSemDrpjK+9AACAPwAAgD9mjtc7FLyNuo4+Grnp8oW0XCe7Om59MDgAAIA/AACAP2ZIFb0tjSE/qibmu5VNsb7X8lK87ESMPAAAAAAAAAAAQ65dvsAfqD86nxe/QA6tvtsMlL4vfT2+AAAAAAAAAACaDwo92rEeP0LFrbtoJoC+EXWCPDHVR7wAAAAAAAAAADOJZDx1wpU/bU7Yu1vLq74Ka808Dqt3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIIIS+QEISMAWyUTSoBjAF0lEdAl1xl2Rq46XV9lChoBkdAciLnUlRgqmgHTTgCaAhHQJdiAr9VFQV1fZQoaAZHQG4nIM8YAKhoB00GAmgIR0CXY7fp2U0OdX2UKGgGR0Bue5QFcIJJaAdNSgFoCEdAl2P3m/336HV9lChoBkdAbv6OwxFiKGgHTV4CaAhHQJdkdGViWmh1fZQoaAZHQHKpVmnO0LNoB02tAWgIR0CXd+TQVsUJdX2UKGgGR0BysxeSjgyeaAdNPAFoCEdAl3iYHTqjanV9lChoBkdAbtJWOIZZS2gHTbYBaAhHQJd49gqmTDB1fZQoaAZHQG5gf1Hvtt1oB014AWgIR0CXee+4b0e2dX2UKGgGR0BwX4jB2wFDaAdNbgFoCEdAl3n5le4TbnV9lChoBkdAbc0YCQtBfWgHTSoCaAhHQJd6lSXMQmN1fZQoaAZHQHHBmjwhGH5oB01kA2gIR0CXe2SBbwBpdX2UKGgGR0BQJNl7MPjGaAdL/WgIR0CXe399tuUEdX2UKGgGR0Bw+fkJa7mMaAdNLgFoCEdAl3wAu/UONHV9lChoBkdAcrT2tMfzSWgHTTsBaAhHQJd8vo2XLNh1fZQoaAZHQHErqBmPHT9oB01AAWgIR0CXfftzS1E3dX2UKGgGR0BJwyApazNVaAdL9mgIR0CXfnBRyfcvdX2UKGgGR0BusMMPSUkfaAdNGAFoCEdAl4IJaV2RrHV9lChoBkdAcjS4QBgeBGgHTUUBaAhHQJeCt7tzCDV1fZQoaAZHQGyoRVIZqEhoB01KAWgIR0CXg2QJHAh0dX2UKGgGR0AwrmKqGUOeaAdL3mgIR0CXg/Kujh1ldX2UKGgGR0Bv/gTIvJzUaAdNFgJoCEdAl4QOnuRcNnV9lChoBkdAcKIbAUL2H2gHTSoBaAhHQJeERHc1wYN1fZQoaAZHQHE6PuG9HtpoB02DAWgIR0CXhLBaLXMAdX2UKGgGR0Bvl/wI+nqFaAdNWwFoCEdAl4UTb8FY+3V9lChoBkdAcWyB7/n4f2gHTZMBaAhHQJeFazkZJkJ1fZQoaAZHQHBoxI8QqZtoB002AWgIR0CXhWujh1kldX2UKGgGR0BvoK00FbFCaAdNNAFoCEdAl4Y1GgBcRnV9lChoBkdAcl0nZTQ3P2gHTX0BaAhHQJeKNf2K2rp1fZQoaAZHQEFa8e0Xxe9oB0vfaAhHQJeMPuIAOrh1fZQoaAZHQG73KpcX3xpoB02KAWgIR0CXjF8BdUsGdX2UKGgGR0BFHMkpqh11aAdL42gIR0CXjVXHR1HOdX2UKGgGR0BSHM/IKc/daAdNAgFoCEdAl42AXMyJsXV9lChoBkdAcnj1oQFs6GgHTZkBaAhHQJeNmJGe+VV1fZQoaAZHQC3ffdhy8z1oB0v3aAhHQJeNxHFxXGR1fZQoaAZHQG31A/TspodoB00mAWgIR0CXjjvECNjtdX2UKGgGR0BxWLuIAOriaAdNngFoCEdAl5HMolUp/nV9lChoBkdAcL7AP/aQFWgHTZwBaAhHQJeSZdv863l1fZQoaAZHQHApSvC/Gl1oB01AAWgIR0CXkpVTaTOgdX2UKGgGR0ByCJlVcUudaAdNZgFoCEdAl5L5MxoIwHV9lChoBkdAcUTXnyNGVmgHTb0CaAhHQJeTbk7wKBx1fZQoaAZHQG+Okd3jdYZoB02mAWgIR0CXk75J9RaYdX2UKGgGR0BxHtNKyv9taAdNSwFoCEdAl5hMiGFi8XV9lChoBkdAcDzjASFoMGgHTU8BaAhHQJebo1fmcON1fZQoaAZHQG44FQ2uPmxoB01RAWgIR0CXnWNZeRgadX2UKGgGR0BvoMPz4DcNaAdNVgFoCEdAl54A0sOG03V9lChoBkdAcXsAIY3vQWgHTW8BaAhHQJegEsRQJol1fZQoaAZHQEb3pAUtZmtoB0vgaAhHQJeg1tj0+Tx1fZQoaAZHQHD2WPtD2J1oB02NAWgIR0CXtZqRlpXZdX2UKGgGR0BzEqvStvGZaAdNyAFoCEdAl7YOZCv5g3V9lChoBkdAcB3ZTyauwGgHTVYBaAhHQJe3Eadc0Lt1fZQoaAZHQHL6lZX+2mZoB007AWgIR0CXtzYA80UHdX2UKGgGR0BxHFBC2MKkaAdNTQFoCEdAl7eC7wrlNnV9lChoBkdAbhOBU70WdmgHTUoBaAhHQJe4VWdVea91fZQoaAZHQGA401yeZohoB03oA2gIR0CXuNZ/Tb35dX2UKGgGR0BqgJe1KGtZaAdN1AJoCEdAl7kh9PUKA3V9lChoBkdAcJN6BAfMfWgHTQsBaAhHQJe5qij+Jgt1fZQoaAZHQHAQNE5QxetoB02QAWgIR0CXubvfj0cwdX2UKGgGR0Bxy5YhdMTOaAdNJwJoCEdAl7qoeLehwnV9lChoBkdAGZS1Vo6CDmgHS/NoCEdAl70tJWeYlnV9lChoBkdAb93JDmbLEGgHTScBaAhHQJe9LcCYCyR1fZQoaAZHQG85ExREWqNoB01YAWgIR0CXvghESdvsdX2UKGgGR0AkpHYHxBmgaAdL7GgIR0CXvgkEs8PndX2UKGgGR0BwxnndO6/ZaAdNOAFoCEdAl74YXTEzf3V9lChoBkdAcGTDOkcjq2gHTTQBaAhHQJe+8GqxTsJ1fZQoaAZHP23A2ycCo0hoB0vnaAhHQJe/6dBjWkJ1fZQoaAZHQHEMRusLfDVoB00GAWgIR0CXv/ksz2vjdX2UKGgGR0ByxYNSZSeiaAdNWQFoCEdAl8HoUi6g/XV9lChoBkdAcLX+85CF9WgHTTgBaAhHQJfB6Jj2Bat1fZQoaAZHQHG39uUD+zdoB000AWgIR0CXwvfu1F6SdX2UKGgGR0BwK8PkJa7maAdNgAFoCEdAl8QCjDbaiHV9lChoBkdAbujAnDziCWgHTUUBaAhHQJfEfd56dDp1fZQoaAZHQG83Ddgv115oB00bAWgIR0CXx+T0g8r7dX2UKGgGR0Bu3TibUgB+aAdNtgFoCEdAl8goYBNmDnV9lChoBkdAcYFcMEzO5mgHTT4BaAhHQJfIWRkmQbN1fZQoaAZHQHEW6rFOwgVoB01EAWgIR0CXyJM5wOvudX2UKGgGR0BywNV7x/d7aAdNRQFoCEdAl8mF/H5rQHV9lChoBkdAcKXLQHAymGgHTRABaAhHQJfJ3KNhmXh1fZQoaAZHQG9fHi3ocJdoB01UAWgIR0CXyiSOinHedX2UKGgGR0ByMZ3cHnloaAdNPQFoCEdAl8pP1QIldHV9lChoBkdAcIv31BdD6WgHTVQBaAhHQJfMJocrAgx1fZQoaAZHQHGFAs5GSZBoB00dAWgIR0CXzEmhdt2tdX2UKGgGR0ByBVxYJVsDaAdNSAJoCEdAl835MlC1JHV9lChoBkdAcec619fCymgHTSEBaAhHQJfOomG/N7l1fZQoaAZHQG9ksj3VTaVoB01wAWgIR0CXz0UONHYpdX2UKGgGR0BwVcGMXJo1aAdNWAFoCEdAl8+GEGqxT3V9lChoBkdAcc8wMpgCwWgHTS8BaAhHQJfPmzJIUah1fZQoaAZHQEbkyon8baRoB00AAWgIR0CX0OFtsN2DdX2UKGgGR0BwTIJF9a2XaAdNDgFoCEdAl9G/yCnP3XV9lChoBkdAbiJRNRFZxWgHTScBaAhHQJfTMSJ0nw51fZQoaAZHQG7re+Eh7mdoB01PAWgIR0CX1LYcvM8pdX2UKGgGR0BvGTy8SPELaAdNSgFoCEdAl9bMC1Z1WHV9lChoBkdAcGOD+zdDY2gHTUwBaAhHQJfXWxlg+hZ1fZQoaAZHQHHj+KO1fE5oB01nAWgIR0CX1+Eehf0FdX2UKGgGR0Bwlj7EYO2BaAdNXgFoCEdAl9h5GFzuGHV9lChoBkdATRm6PKdQPGgHS/1oCEdAl9rNNBWxQnV9lChoBkdAb5yLCN0eVGgHTSMBaAhHQJfa9b+tKZl1fZQoaAZHQHHSVGgBcRloB01iAWgIR0CX24fzBhx6dX2UKGgGR0Bw/p6nivPkaAdNHAFoCEdAl9uHcpLEk3V9lChoBkdAcD0qIrOJL2gHTWgBaAhHQJfb/wQUYbd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
first_try.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8d90b9715a4144f386cd0f9ee10a2a54ad66fe093c420e45539b4373447150f
3
+ size 148042
first_try/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
first_try/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7d96edfb8160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d96edfb81f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d96edfb8280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d96edfb8310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7d96edfb83a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7d96edfb8430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d96edfb84c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d96edfb8550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7d96edfb85e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d96edfb8670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d96edfb8700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d96edfb8790>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7d96edfb0640>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1698678271758134604,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG3wCT5USqQ/Qj0WP+Ohk77NEh0+4merPgAAAAAAAAAAZqVGPRSIkbqyfTm7OQidtqOVATnKHVc6AACAPwAAgD+Giwg+TSSTP7asuz4PHqe+kxAWPloBrz0AAAAAAAAAAHOrrj0MmU8/QA18vOxgdL7ToUw9LysUPQAAAAAAAAAAZlmSPKT9oD/QNfK8FcmdvlJLHj3oWTo9AAAAAAAAAAAA/XI+FB4RP2rCpL27M4a+DzAMPf6Tt7sAAAAAAAAAAOZU0T32DFS6EDJ2t4Rk6bF+22262r2MNgAAAAAAAIA/ACg4PaI/lD5EDTa+f3CgvuVDz704Zyy9AAAAAAAAAABA1sW9V0sZPn4ajT1ECFu+DXQQvcUWLr0AAAAAAAAAAM0OQby2WkU9euwwPY5Vob4FRqi8NG2BPAAAAAAAAAAAzeQpvfYkb7ogTXK8lPLIPCSemDrpjK+9AACAPwAAgD9mjtc7FLyNuo4+Grnp8oW0XCe7Om59MDgAAIA/AACAP2ZIFb0tjSE/qibmu5VNsb7X8lK87ESMPAAAAAAAAAAAQ65dvsAfqD86nxe/QA6tvtsMlL4vfT2+AAAAAAAAAACaDwo92rEeP0LFrbtoJoC+EXWCPDHVR7wAAAAAAAAAADOJZDx1wpU/bU7Yu1vLq74Ka808Dqt3PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIIIS+QEISMAWyUTSoBjAF0lEdAl1xl2Rq46XV9lChoBkdAciLnUlRgqmgHTTgCaAhHQJdiAr9VFQV1fZQoaAZHQG4nIM8YAKhoB00GAmgIR0CXY7fp2U0OdX2UKGgGR0Bue5QFcIJJaAdNSgFoCEdAl2P3m/336HV9lChoBkdAbv6OwxFiKGgHTV4CaAhHQJdkdGViWmh1fZQoaAZHQHKpVmnO0LNoB02tAWgIR0CXd+TQVsUJdX2UKGgGR0BysxeSjgyeaAdNPAFoCEdAl3iYHTqjanV9lChoBkdAbtJWOIZZS2gHTbYBaAhHQJd49gqmTDB1fZQoaAZHQG5gf1Hvtt1oB014AWgIR0CXee+4b0e2dX2UKGgGR0BwX4jB2wFDaAdNbgFoCEdAl3n5le4TbnV9lChoBkdAbc0YCQtBfWgHTSoCaAhHQJd6lSXMQmN1fZQoaAZHQHHBmjwhGH5oB01kA2gIR0CXe2SBbwBpdX2UKGgGR0BQJNl7MPjGaAdL/WgIR0CXe399tuUEdX2UKGgGR0Bw+fkJa7mMaAdNLgFoCEdAl3wAu/UONHV9lChoBkdAcrT2tMfzSWgHTTsBaAhHQJd8vo2XLNh1fZQoaAZHQHErqBmPHT9oB01AAWgIR0CXfftzS1E3dX2UKGgGR0BJwyApazNVaAdL9mgIR0CXfnBRyfcvdX2UKGgGR0BusMMPSUkfaAdNGAFoCEdAl4IJaV2RrHV9lChoBkdAcjS4QBgeBGgHTUUBaAhHQJeCt7tzCDV1fZQoaAZHQGyoRVIZqEhoB01KAWgIR0CXg2QJHAh0dX2UKGgGR0AwrmKqGUOeaAdL3mgIR0CXg/Kujh1ldX2UKGgGR0Bv/gTIvJzUaAdNFgJoCEdAl4QOnuRcNnV9lChoBkdAcKIbAUL2H2gHTSoBaAhHQJeERHc1wYN1fZQoaAZHQHE6PuG9HtpoB02DAWgIR0CXhLBaLXMAdX2UKGgGR0Bvl/wI+nqFaAdNWwFoCEdAl4UTb8FY+3V9lChoBkdAcWyB7/n4f2gHTZMBaAhHQJeFazkZJkJ1fZQoaAZHQHBoxI8QqZtoB002AWgIR0CXhWujh1kldX2UKGgGR0BvoK00FbFCaAdNNAFoCEdAl4Y1GgBcRnV9lChoBkdAcl0nZTQ3P2gHTX0BaAhHQJeKNf2K2rp1fZQoaAZHQEFa8e0Xxe9oB0vfaAhHQJeMPuIAOrh1fZQoaAZHQG73KpcX3xpoB02KAWgIR0CXjF8BdUsGdX2UKGgGR0BFHMkpqh11aAdL42gIR0CXjVXHR1HOdX2UKGgGR0BSHM/IKc/daAdNAgFoCEdAl42AXMyJsXV9lChoBkdAcnj1oQFs6GgHTZkBaAhHQJeNmJGe+VV1fZQoaAZHQC3ffdhy8z1oB0v3aAhHQJeNxHFxXGR1fZQoaAZHQG31A/TspodoB00mAWgIR0CXjjvECNjtdX2UKGgGR0BxWLuIAOriaAdNngFoCEdAl5HMolUp/nV9lChoBkdAcL7AP/aQFWgHTZwBaAhHQJeSZdv863l1fZQoaAZHQHApSvC/Gl1oB01AAWgIR0CXkpVTaTOgdX2UKGgGR0ByCJlVcUudaAdNZgFoCEdAl5L5MxoIwHV9lChoBkdAcUTXnyNGVmgHTb0CaAhHQJeTbk7wKBx1fZQoaAZHQG+Okd3jdYZoB02mAWgIR0CXk75J9RaYdX2UKGgGR0BxHtNKyv9taAdNSwFoCEdAl5hMiGFi8XV9lChoBkdAcDzjASFoMGgHTU8BaAhHQJebo1fmcON1fZQoaAZHQG44FQ2uPmxoB01RAWgIR0CXnWNZeRgadX2UKGgGR0BvoMPz4DcNaAdNVgFoCEdAl54A0sOG03V9lChoBkdAcXsAIY3vQWgHTW8BaAhHQJegEsRQJol1fZQoaAZHQEb3pAUtZmtoB0vgaAhHQJeg1tj0+Tx1fZQoaAZHQHD2WPtD2J1oB02NAWgIR0CXtZqRlpXZdX2UKGgGR0BzEqvStvGZaAdNyAFoCEdAl7YOZCv5g3V9lChoBkdAcB3ZTyauwGgHTVYBaAhHQJe3Eadc0Lt1fZQoaAZHQHL6lZX+2mZoB007AWgIR0CXtzYA80UHdX2UKGgGR0BxHFBC2MKkaAdNTQFoCEdAl7eC7wrlNnV9lChoBkdAbhOBU70WdmgHTUoBaAhHQJe4VWdVea91fZQoaAZHQGA401yeZohoB03oA2gIR0CXuNZ/Tb35dX2UKGgGR0BqgJe1KGtZaAdN1AJoCEdAl7kh9PUKA3V9lChoBkdAcJN6BAfMfWgHTQsBaAhHQJe5qij+Jgt1fZQoaAZHQHAQNE5QxetoB02QAWgIR0CXubvfj0cwdX2UKGgGR0Bxy5YhdMTOaAdNJwJoCEdAl7qoeLehwnV9lChoBkdAGZS1Vo6CDmgHS/NoCEdAl70tJWeYlnV9lChoBkdAb93JDmbLEGgHTScBaAhHQJe9LcCYCyR1fZQoaAZHQG85ExREWqNoB01YAWgIR0CXvghESdvsdX2UKGgGR0AkpHYHxBmgaAdL7GgIR0CXvgkEs8PndX2UKGgGR0BwxnndO6/ZaAdNOAFoCEdAl74YXTEzf3V9lChoBkdAcGTDOkcjq2gHTTQBaAhHQJe+8GqxTsJ1fZQoaAZHP23A2ycCo0hoB0vnaAhHQJe/6dBjWkJ1fZQoaAZHQHEMRusLfDVoB00GAWgIR0CXv/ksz2vjdX2UKGgGR0ByxYNSZSeiaAdNWQFoCEdAl8HoUi6g/XV9lChoBkdAcLX+85CF9WgHTTgBaAhHQJfB6Jj2Bat1fZQoaAZHQHG39uUD+zdoB000AWgIR0CXwvfu1F6SdX2UKGgGR0BwK8PkJa7maAdNgAFoCEdAl8QCjDbaiHV9lChoBkdAbujAnDziCWgHTUUBaAhHQJfEfd56dDp1fZQoaAZHQG83Ddgv115oB00bAWgIR0CXx+T0g8r7dX2UKGgGR0Bu3TibUgB+aAdNtgFoCEdAl8goYBNmDnV9lChoBkdAcYFcMEzO5mgHTT4BaAhHQJfIWRkmQbN1fZQoaAZHQHEW6rFOwgVoB01EAWgIR0CXyJM5wOvudX2UKGgGR0BywNV7x/d7aAdNRQFoCEdAl8mF/H5rQHV9lChoBkdAcKXLQHAymGgHTRABaAhHQJfJ3KNhmXh1fZQoaAZHQG9fHi3ocJdoB01UAWgIR0CXyiSOinHedX2UKGgGR0ByMZ3cHnloaAdNPQFoCEdAl8pP1QIldHV9lChoBkdAcIv31BdD6WgHTVQBaAhHQJfMJocrAgx1fZQoaAZHQHGFAs5GSZBoB00dAWgIR0CXzEmhdt2tdX2UKGgGR0ByBVxYJVsDaAdNSAJoCEdAl835MlC1JHV9lChoBkdAcec619fCymgHTSEBaAhHQJfOomG/N7l1fZQoaAZHQG9ksj3VTaVoB01wAWgIR0CXz0UONHYpdX2UKGgGR0BwVcGMXJo1aAdNWAFoCEdAl8+GEGqxT3V9lChoBkdAcc8wMpgCwWgHTS8BaAhHQJfPmzJIUah1fZQoaAZHQEbkyon8baRoB00AAWgIR0CX0OFtsN2DdX2UKGgGR0BwTIJF9a2XaAdNDgFoCEdAl9G/yCnP3XV9lChoBkdAbiJRNRFZxWgHTScBaAhHQJfTMSJ0nw51fZQoaAZHQG7re+Eh7mdoB01PAWgIR0CX1LYcvM8pdX2UKGgGR0BvGTy8SPELaAdNSgFoCEdAl9bMC1Z1WHV9lChoBkdAcGOD+zdDY2gHTUwBaAhHQJfXWxlg+hZ1fZQoaAZHQHHj+KO1fE5oB01nAWgIR0CX1+Eehf0FdX2UKGgGR0Bwlj7EYO2BaAdNXgFoCEdAl9h5GFzuGHV9lChoBkdATRm6PKdQPGgHS/1oCEdAl9rNNBWxQnV9lChoBkdAb5yLCN0eVGgHTSMBaAhHQJfa9b+tKZl1fZQoaAZHQHHSVGgBcRloB01iAWgIR0CX24fzBhx6dX2UKGgGR0Bw/p6nivPkaAdNHAFoCEdAl9uHcpLEk3V9lChoBkdAcD0qIrOJL2gHTWgBaAhHQJfb/wQUYbd1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
first_try/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80766e6b176300fff654b6bef2b4a79e16d0b2f9ee73e8f92fdb20a781040f1d
3
+ size 88362
first_try/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17861649ef55bb7c31f5a8b62011aa8d4cb3689bbdd7fbb61a03d7feee7f75e6
3
+ size 43762
first_try/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
first_try/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (172 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 252.49617273231735, "std_reward": 17.827802449715026, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-30T15:34:21.758259"}