ddobokki commited on
Commit
66c81d9
โ€ข
1 Parent(s): 8102290

edit: README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -111
README.md CHANGED
@@ -7,120 +7,17 @@ tags:
7
  - transformers
8
 
9
  ---
10
-
11
- # {MODEL_NAME}
12
-
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
-
15
- <!--- Describe your model here -->
16
-
17
- ## Usage (Sentence-Transformers)
18
-
19
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
-
21
- ```
22
- pip install -U sentence-transformers
23
- ```
24
-
25
- Then you can use the model like this:
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
 
 
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
- embeddings = model.encode(sentences)
33
- print(embeddings)
 
34
  ```
35
 
36
-
37
-
38
- ## Usage (HuggingFace Transformers)
39
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
-
41
- ```python
42
- from transformers import AutoTokenizer, AutoModel
43
- import torch
44
-
45
-
46
- #Mean Pooling - Take attention mask into account for correct averaging
47
- def mean_pooling(model_output, attention_mask):
48
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
-
52
-
53
- # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
-
56
- # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
-
60
- # Tokenize sentences
61
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
-
63
- # Compute token embeddings
64
- with torch.no_grad():
65
- model_output = model(**encoded_input)
66
-
67
- # Perform pooling. In this case, mean pooling.
68
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
-
70
- print("Sentence embeddings:")
71
- print(sentence_embeddings)
72
- ```
73
-
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
-
82
-
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 181 with parameters:
89
- ```
90
- {'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
96
-
97
- Parameters of the fit()-Method:
98
- ```
99
- {
100
- "epochs": 4,
101
- "evaluation_steps": 18,
102
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
- "optimizer_params": {
106
- "lr": 2e-05
107
- },
108
- "scheduler": "WarmupLinear",
109
- "steps_per_epoch": null,
110
- "warmup_steps": 19,
111
- "weight_decay": 0.01
112
- }
113
- ```
114
-
115
-
116
- ## Full Model Architecture
117
- ```
118
- SentenceTransformer(
119
- (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: RobertaModel
120
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
- )
122
- ```
123
-
124
- ## Citing & Authors
125
-
126
- <!--- Describe where people can find more information -->
 
7
  - transformers
8
 
9
  ---
10
+ ํ•œ๊ตญ์–ด์™€ ์˜์–ด์˜ nli, sts๋ฐ์ดํ„ฐ๋ฅผ klue/roberta-base์— ํ•™์Šต์‹œํ‚จ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  ```python
13
  from sentence_transformers import SentenceTransformer
14
+ from sklearn.metrics.pairwise import cosine_similarity
15
+ query = ['๊ทธ๋Š” ๊ทธ๋…€๋ฅผ ์ข‹์•„ํ•œ๋‹ค.']
16
+ sentences = ["he love her", "he hate her", '๊ทธ๋…€๋Š” ๊ทธ๋ฅผ ์‹ซ์–ดํ•œ๋‹ค.','attention is all you need']
17
 
18
+ emb1 = model.encode(query)
19
+ emb2 = model.encode(sentences)
20
+ print(cosine_similarity(emb1,emb2))
21
+ -> array([[0.62751913, 0.23996451, 0.30788696, 0.08123618]], dtype=float32)
22
  ```
23