File size: 1,955 Bytes
5b86415 1b68988 5b86415 1896a87 f501af5 5b86415 e2e3283 5b86415 432e4a0 5b86415 e2e3283 5b86415 f501af5 5b86415 f501af5 5b86415 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: summarise_v8
results: []
---
![SGH logo.png](https://s3.amazonaws.com/moonup/production/uploads/1667143139655-631feef1124782a19eff4243.png)
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the SGH news articles and summaries dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8163
- Rouge2 Precision: 0.3628
- Rouge2 Recall: 0.3589
- Rouge2 Fmeasure: 0.3316
## Model description
This model was created to generate summaries of news articles.
## Intended uses & limitations
The model takes up to maximum article length of 768 tokens and generates a summary of maximum length of 512 tokens, and minimum length of 100 tokens.
## Training and evaluation data
This model was trained on 100+ articles and summaries from SGH.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
| 1.5952 | 0.23 | 10 | 1.0414 | 0.2823 | 0.3908 | 0.3013 |
| 1.8116 | 0.47 | 20 | 0.9171 | 0.3728 | 0.273 | 0.3056 |
| 1.6289 | 0.7 | 30 | 0.8553 | 0.3284 | 0.2892 | 0.291 |
| 1.5074 | 0.93 | 40 | 0.8163 | 0.3628 | 0.3589 | 0.3316 |
### Framework versions
- Transformers 4.21.3
- Pytorch 1.12.1+cu113
- Datasets 1.2.1
- Tokenizers 0.12.1
|