Text Generation
Transformers
PyTorch
llama
text-generation-inference
Inference Endpoints
deepanway commited on
Commit
7124617
·
1 Parent(s): 8442c06

Upload flacuna.py

Browse files
Files changed (1) hide show
  1. flacuna.py +52 -0
flacuna.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from dataclasses import dataclass
3
+ from peft import LoraConfig, get_peft_model
4
+ from transformers import LlamaForCausalLM, LlamaTokenizer
5
+
6
+
7
+ @dataclass
8
+ class LoraArguments:
9
+ lora_r: int = 8
10
+ lora_alpha: int = 16
11
+ lora_dropout: float = 0.05
12
+ lora_target_modules = ["q_proj", "v_proj"]
13
+ lora_weight_path: str = ""
14
+ bias: str = "none"
15
+
16
+
17
+ if __name__ == "__main__":
18
+ device = 0
19
+ lora_args = LoraArguments
20
+ base_model = "TheBloke/vicuna-13B-1.1-HF"
21
+
22
+ tokenizer = LlamaTokenizer.from_pretrained(base_model)
23
+ model = LlamaForCausalLM.from_pretrained(
24
+ base_model, load_in_8bit=True,
25
+ torch_dtype=torch.float16, device_map={"": device}
26
+ )
27
+
28
+ lora_config = LoraConfig(
29
+ r=lora_args.lora_r, lora_alpha=lora_args.lora_alpha, lora_dropout=lora_args.lora_dropout,
30
+ target_modules=lora_args.lora_target_modules, bias=lora_args.bias, task_type="CAUSAL_LM",
31
+ )
32
+ model = get_peft_model(model, lora_config)
33
+
34
+ weight = torch.load("flacuna-13b-v1.0/pytorch_model.bin", map_location="cpu")
35
+ model.load_state_dict(weight)
36
+
37
+ prompt = (
38
+ "A chat between a curious user and an artificial intelligence assistant. "
39
+ "The assistant gives helpful, detailed, and polite answers to the user's questions. "
40
+ "USER: You are tasked to demonstrate your writing skills in professional or work settings for the following question.\n"
41
+ "Can you help me write a speech for a graduation ceremony, inspiring and motivating the graduates to pursue their dreams and make a positive impact on the world?\n"
42
+ "Output: ASSISTANT: "
43
+ )
44
+
45
+ inputs = tokenizer([prompt], return_tensors="pt")
46
+ inputs = {k: v.to("cuda:{}".format(device)) for k, v in inputs.items()}
47
+
48
+ out = model.generate(
49
+ **inputs, max_new_tokens=500, min_new_tokens=100, early_stopping=True, do_sample=True, top_k=8, temperature=0.75
50
+ )
51
+ decoded = tokenizer.decode(out[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
52
+ print (decoded)