Text Generation
Transformers
PyTorch
llama
text-generation-inference
Inference Endpoints
soujanyaporia commited on
Commit
bb45fe7
1 Parent(s): 57d1ccf

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -0
README.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: transformers
4
+ ---
5
+
6
+ # Flacuna: A Vicuna made of Flan
7
+
8
+ <img src="flacuna5.png" alt="Image" width="200" height="335">
9
+
10
+ Flacuna was developed by fine-tuning Vicuna on Flan-mini, a comprehensive instruction collection encompassing various tasks. Vicuna is already an excellent writing assistant, and the intention behind Flacuna was to enhance Vicuna's problem-solving capabilities. To achieve this, we curated a dedicated instruction dataset called Flan-mini.
11
+
12
+ | Dataset Name | Source | Dataset Size |
13
+ |-----------------------------|------------------------|--------------|
14
+ | Flan2021 | Flan | 388K |
15
+ | Public Pool of Prompts | Flan | 320K |
16
+ | Natural instructions v2 | Flan | 200K |
17
+ | CoT | Flan | 100K |
18
+ | Code Search | husain2019codesearchnet | 100K |
19
+ | Code Contest | li2022competition | 50K |
20
+ | Apps | hendrycksapps2021 | 50K |
21
+ | GPT4-Alpaca | GPT-4 | 52K |
22
+ | Code-Alpaca | ChatGPT | 20K |
23
+ | ShareGPT | ChatGPT | 60K |
24
+ | Total | - | 1.34M |
25
+
26
+
27
+ As a result of this fine-tuning process, Flacuna exhibited notable performance improvements in problem-solving across multiple benchmark datasets, both in few-shot and zero-shot settings.
28
+
29
+ | **Model** | **Size** | **MMLU (5-shot)** | **BBH (3-shot)** | **DROP (3-shot)** | **CRASS (3-shot)** | **HumanEval (0-shot)** | **Avg.** |
30
+ | --- | --- | --- | --- | --- | --- | --- | --- |
31
+ | StableVicuna | 13B | 49.2 (+3.0) | 37.5 (+0.4) | 34.3 (-1.0) | 67.5 (+8.7) | 15.9 (+2.5) | 40.9 (+2.7) |
32
+ | Vicuna | 13B | 50.6 (+4.5) | 37.6 (+0.5) | 32.6 (-3.0) | 60.9 (+2.1) | 11.6 (-1.8) | 38.7 (+0.6) |
33
+ | Flacuna | 13B | 51.1 (+5.0) | 39.3 (+2.2) | 43.6 (+8.0) | 74.1 (+15.3) | 11.0 (-2.4) | 43.8 (+5.6) |
34
+
35
+ | **Model** | **Size** | **MMLU (0-shot)** | **BBH (0-shot)** | **CRASS (0-shot)** |
36
+ | --- | --- | --- | --- | --- |
37
+ | StableVicuna | 13B | 47.5 | 18.5 | 64.2 |
38
+ | Vicuna | 13B | 48.3 | 28.3 | 65.7 |
39
+ | Flacuna | 13B | 49.4 | 32.5 | 67.9 |
40
+
41
+
42
+ During training, Flacuna employed a maximum input sequence length of 1280. We utilized LoRA for parameter-efficient fine-tuning.