Text2Text Generation
Transformers
PyTorch
Safetensors
t5
text-generation-inference
Inference Endpoints
chiayewken commited on
Commit
b29b0ab
1 Parent(s): 1807ef0

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - tatsu-lab/alpaca
5
+ ---
6
+
7
+ ## 🍮 🦙 Flan-Alpaca: Instruction Tuning from Humans and Machines
8
+
9
+ Our [repository](https://github.com/declare-lab/flan-alpaca) contains code for extending the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
10
+ synthetic instruction tuning to existing instruction-tuned models such as [Flan-T5](https://arxiv.org/abs/2210.11416).
11
+ We have a [live interactive demo](https://huggingface.co/spaces/joaogante/transformers_streaming) thanks to [Joao Gante](https://huggingface.co/joaogante)!
12
+ We are also benchmarking many instruction-tuned models at [declare-lab/flan-eval](https://github.com/declare-lab/flan-eval).
13
+ Our pretrained models are fully available on HuggingFace 🤗 :
14
+
15
+ | Model | Parameters | Instruction Data | Training GPUs |
16
+ |----------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
17
+ | [Flan-Alpaca-Base](https://huggingface.co/declare-lab/flan-alpaca-base) | 220M | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 1x A6000 |
18
+ | [Flan-Alpaca-Large](https://huggingface.co/declare-lab/flan-alpaca-large) | 770M | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 1x A6000 |
19
+ | [Flan-Alpaca-XL](https://huggingface.co/declare-lab/flan-alpaca-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 1x A6000 |
20
+ | [Flan-Alpaca-XXL](https://huggingface.co/declare-lab/flan-alpaca-xxl) | 11B | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 4x A6000 (FSDP) |
21
+ | [Flan-GPT4All-XL](https://huggingface.co/declare-lab/flan-gpt4all-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [GPT4All](https://github.com/nomic-ai/gpt4all) | 1x A6000 |
22
+ | [Flan-ShareGPT-XL](https://huggingface.co/declare-lab/flan-sharegpt-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [ShareGPT](https://github.com/domeccleston/sharegpt)/[Vicuna](https://github.com/lm-sys/FastChat) | 1x A6000 |
23
+ | [Flan-Alpaca-GPT4-XL*](https://huggingface.co/declare-lab/flan-alpaca-gpt4-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [GPT4-Alpaca](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM) | 1x A6000 |
24
+
25
+ *recommended for better performance
26
+
27
+ ### Why?
28
+
29
+ [Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html) represents an exciting new direction
30
+ to approximate the performance of large language models (LLMs) like ChatGPT cheaply and easily.
31
+ Concretely, they leverage an LLM such as GPT-3 to generate instructions as synthetic training data.
32
+ The synthetic data which covers more than 50k tasks can then be used to finetune a smaller model.
33
+ However, the original implementation is less accessible due to licensing constraints of the
34
+ underlying [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) model.
35
+ Furthermore, users have noted [potential noise](https://github.com/tloen/alpaca-lora/issues/65) in the synthetic
36
+ dataset. Hence, it may be better to explore a fully accessible model that is already trained on high-quality (but
37
+ less diverse) instructions such as [Flan-T5](https://arxiv.org/abs/2210.11416).
38
+
39
+ ### Usage
40
+
41
+ ```
42
+ from transformers import pipeline
43
+
44
+ prompt = "Write an email about an alpaca that likes flan"
45
+ model = pipeline(model="declare-lab/flan-alpaca-gpt4-xl")
46
+ model(prompt, max_length=128, do_sample=True)
47
+
48
+ # Dear AlpacaFriend,
49
+ # My name is Alpaca and I'm 10 years old.
50
+ # I'm excited to announce that I'm a big fan of flan!
51
+ # We like to eat it as a snack and I believe that it can help with our overall growth.
52
+ # I'd love to hear your feedback on this idea.
53
+ # Have a great day!
54
+ # Best, AL Paca
55
+ ```