Text Generation
Transformers
PyTorch
llama
Eval Results
text-generation-inference
Inference Endpoints
starling-7B / README.md
soujanyaporia's picture
Adding Evaluation Results (#1)
cd5873c verified
---
license: apache-2.0
datasets:
- anon8231489123/ShareGPT_Vicuna_unfiltered
- declare-lab/HarmfulQA
model-index:
- name: starling-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 51.02
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 76.77
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.75
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 48.18
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.56
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 10.08
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
---
[**Paper**](https://arxiv.org/abs/2308.09662) | [**Github**](https://github.com/declare-lab/red-instruct) | [**Dataset**](https://huggingface.co/datasets/declare-lab/HarmfulQA)| [**Model**](https://huggingface.co/declare-lab/starling-7B)
> 📣 Update 2/02/24: Introducing Resta: **Safety Re-alignment of Language Models**. [**Paper**](https://arxiv.org/abs/2402.11746) [**Github**](https://github.com/declare-lab/resta) [**Dataset**](https://huggingface.co/datasets/declare-lab/CategoricalHarmfulQ)
As a part of our research efforts to make LLMs safer, we created **Starling**. It is obtained by fine-tuning Vicuna-7B on [**HarmfulQA**](https://huggingface.co/datasets/declare-lab/HarmfulQA), a ChatGPT-distilled dataset that we collected using the Chain of Utterances (CoU) prompt. More details are in our paper [**Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment**](https://arxiv.org/abs/2308.09662)
<img src="https://declare-lab.github.io/assets/images/logos/starling-final.png" alt="Image" width="100" height="100">
Experimental results on several safety benchmark datasets indicate that **Starling** is a safer model compared to the baseline model, Vicuna.
<img src="https://declare-lab.github.io/assets/images/logos/method.png" alt="Image" width="1000" height="335">
<h2>Experimental Results</h2>
Compared to Vicuna, **Avg. 5.2% reduction in Attack Success Rate** (ASR) on DangerousQA and HarmfulQA using three different prompts.**
Compared to Vicuna, **Avg. 3-7% improvement in HHH score** measured on BBH-HHH benchmark.**
<img src="https://declare-lab.github.io/assets/images/logos/starling-results.png" alt="Image" width="1000" height="335">
TruthfulQA (MC2): **48.90 vs Vicuna's 47.00**
MMLU (5-shot): **46.69 vs Vicuna's 47.18**
BBH (3-shot): **33.47 vs Vicuna's 33.05**
<h2>Jailbreak Prompt for harmfulness eval using Red Eval as reported in the paper</h2>
This jailbreak prompt (termed as Chain of Utterances (CoU) prompt in the paper) shows a 65% Attack Success Rate (ASR) on GPT-4 and 72% on ChatGPT.
<img src="https://declare-lab.github.io/assets/images/logos/jailbreakprompt_main_paper.png" alt="Image" width="1000" height="1000">
<h2>HarmfulQA Data Collection</h2>
We also release our **HarmfulQA** dataset with 1,960 harmful questions (converting 10 topics-10 subtopics) for red-teaming as well as conversations based on them used in model safety alignment, more details [**here**](https://huggingface.co/datasets/declare-lab/HarmfulQA). The following figure describes the data collection process.
<img src="https://declare-lab.github.io/assets/images/logos/data_gen.png" alt="Image" width="1000" height="1000">
_Note: This model is referred to as Starling (Blue) in the paper. We shall soon release Starling (Blue-Red) which was trained on harmful data using an objective function that helps the model learn from the red (harmful) response data._
## Citation
```bibtex
@misc{bhardwaj2023redteaming,
title={Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment},
author={Rishabh Bhardwaj and Soujanya Poria},
year={2023},
eprint={2308.09662},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_declare-lab__starling-7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |50.73|
|AI2 Reasoning Challenge (25-Shot)|51.02|
|HellaSwag (10-Shot) |76.77|
|MMLU (5-Shot) |47.75|
|TruthfulQA (0-shot) |48.18|
|Winogrande (5-shot) |70.56|
|GSM8k (5-shot) |10.08|