---
license: apache-2.0
datasets:
- anon8231489123/ShareGPT_Vicuna_unfiltered
- declare-lab/HarmfulQA
model-index:
- name: starling-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 51.02
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 76.77
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 47.75
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 48.18
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.56
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 10.08
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=declare-lab/starling-7B
name: Open LLM Leaderboard
---
[**Paper**](https://arxiv.org/abs/2308.09662) | [**Github**](https://github.com/declare-lab/red-instruct) | [**Dataset**](https://huggingface.co/datasets/declare-lab/HarmfulQA)| [**Model**](https://huggingface.co/declare-lab/starling-7B)
> 📣 Update 2/02/24: Introducing Resta: **Safety Re-alignment of Language Models**. [**Paper**](https://arxiv.org/abs/2402.11746) [**Github**](https://github.com/declare-lab/resta) [**Dataset**](https://huggingface.co/datasets/declare-lab/CategoricalHarmfulQ)
As a part of our research efforts to make LLMs safer, we created **Starling**. It is obtained by fine-tuning Vicuna-7B on [**HarmfulQA**](https://huggingface.co/datasets/declare-lab/HarmfulQA), a ChatGPT-distilled dataset that we collected using the Chain of Utterances (CoU) prompt. More details are in our paper [**Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment**](https://arxiv.org/abs/2308.09662)
Experimental results on several safety benchmark datasets indicate that **Starling** is a safer model compared to the baseline model, Vicuna.