{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "42267bba-a891-4f21-8c84-a549fb3de59d", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd \n", "import torch \n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "id": "48ab380a-2721-4646-9511-69d1513163eb", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
IndexHeight(Inches)Weight(Pounds)
0165.78331112.9925
1271.51521136.4873
2369.39874153.0269
3468.21660142.3354
4567.78781144.2971
............
959670.55703131.8001
969766.28644120.0285
979863.42577123.0972
989966.76711128.1432
9910068.88741115.4759
\n", "

100 rows × 3 columns

\n", "
" ], "text/plain": [ " Index Height(Inches) Weight(Pounds)\n", "0 1 65.78331 112.9925\n", "1 2 71.51521 136.4873\n", "2 3 69.39874 153.0269\n", "3 4 68.21660 142.3354\n", "4 5 67.78781 144.2971\n", ".. ... ... ...\n", "95 96 70.55703 131.8001\n", "96 97 66.28644 120.0285\n", "97 98 63.42577 123.0972\n", "98 99 66.76711 128.1432\n", "99 100 68.88741 115.4759\n", "\n", "[100 rows x 3 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Input(Wieght)\n", "data = pd.read_csv(\"/Users/deepeshjha/Desktop/DSnML/weight.csv\",encoding='windows-1254', nrows=100)\n", "data" ] }, { "cell_type": "code", "execution_count": 3, "id": "8c8aef4d-25b3-41ae-8788-20f433fcdb49", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Height(Inches)Weight(Pounds)
065.78331112.9925
171.51521136.4873
269.39874153.0269
368.21660142.3354
467.78781144.2971
.........
9570.55703131.8001
9666.28644120.0285
9763.42577123.0972
9866.76711128.1432
9968.88741115.4759
\n", "

100 rows × 2 columns

\n", "
" ], "text/plain": [ " Height(Inches) Weight(Pounds)\n", "0 65.78331 112.9925\n", "1 71.51521 136.4873\n", "2 69.39874 153.0269\n", "3 68.21660 142.3354\n", "4 67.78781 144.2971\n", ".. ... ...\n", "95 70.55703 131.8001\n", "96 66.28644 120.0285\n", "97 63.42577 123.0972\n", "98 66.76711 128.1432\n", "99 68.88741 115.4759\n", "\n", "[100 rows x 2 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.drop(columns='Index',axis=1,inplace=True)\n", "data" ] }, { "cell_type": "code", "execution_count": 4, "id": "e36e2d2d-47f1-4670-a5da-07e45c1a8a5a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4OUlEQVR4nO3df3SU5Z3//9eEQKJIJgYbJqlEKVYlYqmCYLac3aJBA26sytriB6m1LBypsV1xlS/usZR1Wz7sutXqWqkej+w5oN11j6LoaVw0WtQNv5vdD8JaYFNBSGRLZELQhJC5v3/QmTLJTDL3/Ljv677n+Tgn55iZO5MruTHXe97X+3pfAcuyLAEAABikwO0BAAAA9EeAAgAAjEOAAgAAjEOAAgAAjEOAAgAAjEOAAgAAjEOAAgAAjEOAAgAAjFPo9gDSEYlEdPjwYY0aNUqBQMDt4QAAgBRYlqXjx4+rsrJSBQWD50g8GaAcPnxYY8eOdXsYAAAgDQcPHtT5558/6DWeDFBGjRol6fQPWFJS4vJoAABAKjo7OzV27NjYPD4YTwYo0WWdkpISAhQAADwmlfIMimQBAIBxCFAAAIBxCFAAAIBxCFAAAIBxCFAAAIBxCFAAAIBxCFAAAIBxCFAAAIBxPNmoDQCAVPVFLG1t7dCR490qH1WsqePKNKyAc9xMR4ACAPCtxl1tWrFht9rC3bHHKoLFWl5frbqJFS6ODENhiQcA4EuNu9q0eO3OuOBEktrD3Vq8dqcad7W5NDKkggAFAOA7fRFLKzbslpXguehjKzbsVl8k0RUwAQEKAMA4fRFLzfuP6pWWQ2ref9R2ILG1tWNA5uRMlqS2cLe2tnZkOFLkCjUoAACjZKNu5Mjx5MFJOtfBeWRQAADGyFbdSPmo4qxeB+cRoAAAjJDNupGp48pUESxWss3EAZ3OykwdV5bmaJFrBCgAACNks25kWEFAy+urJWlAkBL9fHl9Nf1QDEaAAgAwQrbrRuomVuip269UKBi/jBMKFuup26+kD4rhKJIFABghF3UjdRMrNLM6RCdZDyJAAQAYIVo30h7uTliHEtDp7IfdupFhBQHVjB+dlTHCOSzxAACMQN0IzkSAAgAwBnUjiGKJBwBgFOpGIBGgAAAMRN0IWOIBAADGIYMCAJB0upMryyowBQEKACArB/QB2cQSDwDkuWwd0AdkEwEKAOSxbB7QB2QTAQoA5LFsHtAHZBMBCgDksWwf0AdkCwEKAOSxXBzQB2QDAQoA5LHoAX3JNhMHdHo3j90D+oBMEaAAQB7jgD6YigAFAPIcB/TBRDRqAwBwQB+MQ4ACAJDEAX0wC0s8AADAOAQoAADAOAQoAADAOAQoAADAOAQoAADAOAQoAADAOLYDlE2bNqm+vl6VlZUKBAJav3593PPf+c53FAgE4j7q6uriruno6NC8efNUUlKi0tJSLViwQF1dXRn9IAAAwD9sBygnTpzQpEmT9OSTTya9pq6uTm1tbbGPF154Ie75efPm6YMPPtDGjRv12muvadOmTVq0aJH90QMAAF+y3aht1qxZmjVr1qDXFBUVKRQKJXxuz549amxs1LZt2zRlyhRJ0hNPPKHZs2frkUceUWVlpd0hAQAAn8lJDco777yj8vJyXXLJJVq8eLGOHj0ae665uVmlpaWx4ESSamtrVVBQoC1btuRiOAAAwGOy3uq+rq5Ot9xyi8aNG6f9+/frwQcf1KxZs9Tc3Kxhw4apvb1d5eXl8YMoLFRZWZna29sTvmZPT496enpin3d2dmZ72AAAwCBZD1Dmzp0b++/LL79cX/nKVzR+/Hi98847uvbaa9N6zZUrV2rFihXZGiIAADBczrcZf+lLX9J5552nffv2SZJCoZCOHDkSd82pU6fU0dGRtG5l2bJlCofDsY+DBw/metgAAMBFOQ9QPv74Yx09elQVFRWSpJqaGh07dkw7duyIXdPU1KRIJKJp06YlfI2ioiKVlJTEfQAAAP+yvcTT1dUVy4ZIUmtrq1paWlRWVqaysjKtWLFCc+bMUSgU0v79+/XAAw/ooosu0vXXXy9JmjBhgurq6rRw4UKtXr1avb29amho0Ny5c9nBAwAAJEkBy7IsO1/wzjvvaMaMGQMev+OOO/TUU0/ppptu0m9+8xsdO3ZMlZWVuu666/Twww9rzJgxsWs7OjrU0NCgDRs2qKCgQHPmzNHjjz+uc845J6UxdHZ2KhgMKhwOk00BAMAj7MzftgMUExCgAADgPXbmb87iAQAAxsn6NmMAAHKpL2Jpa2uHjhzvVvmoYk0dV6ZhBQG3h4UsI0ABAHhG4642rdiwW23h7thjFcFiLa+vVt3EChdHhmxjiQcA4AmNu9q0eO3OuOBEktrD3Vq8dqcad7W5NDLkAgEKAMB4fRFLKzbsVqJdHdHHVmzYrb6I5/Z9IAkCFACA8ba2dgzInJzJktQW7tbW1g7nBoWcogYFAOAKO8WuR44nD07SuQ7mI0ABADjObrFr+ajilF431etgPpZ4AACOSqfYdeq4MlUEi5VsM3FApwOcqePKsj9guIIABQDgmHSLXYcVBLS8vlqSBgQp0c+X11fTD8VHCFAAAI7JpNi1bmKFnrr9SoWC8cs4oWCxnrr9Svqg+Aw1KAAAx2Ra7Fo3sUIzq0N0ks0DBCgAAMdko9h1WEFANeNHZ2tIMBRLPAAAx1DsilQRoAB5pi9iqXn/Ub3SckjN+4/SeROOotgVqWKJB8gjHLQGE0SLXfv/WwzxbxFnCFiW5bm3T52dnQoGgwqHwyopKXF7OIAnRHtP9P8fPvo+lV0QcJqdTrLwBzvzNxkUIA8M1XsioNO9J2ZWh5gg4BiKXTEYalCAPMBBawC8hgAFyAMctAbAawhQgDzAQWsAvIYABcgD9J4A4DUEKEAe8FvvCXq5AP7HLh4gT/il9wS9XID8QB8UIM94ufcEvVwAb6MPCoCkvNp7gl4uQH4hQAHgCXZ6uXgxAEvEy9mu/vz0s8AZBCgAPCHfern4qdbGTz8LnMMuHgCekE+9XKK1Nv0zRu3hbi1eu1ONu9pcGpl9fvpZ4CwCFACe4IdeLqlsjx6q1kY6XWvjha3VfvpZ4DyWeAB4QrSXy+K1OxWQ4iY9L/RySXWZw0+1Nn76WeA8MigAPCPayyUUjF/GCQWLjd5ibGeZw0+1Nn76WeA8MigAPKVuYoVmVoc8syPE7vbodGptTN0hk091Q8g+AhQAnpPLXi7ZnuztLnNEa23aw90Jg5qATmeMorU2Ju+QsfuzeJWpAaLXEaAAwB/kYrK3u8xhp9YmWWfd6NKR28teXq8bSoXJAaLXUYMCAMrddth0ljlSqbXxyg4Zr9YNpYIt1LlFBgXwOa+ln90Yby7b6Ke7zDFUrY2Xdsh4rW4oFRy9kHsEKICPeS397NZ4cznZZ7LMMVitjdd2yHj1DKhkvBQgehVLPIBPeS397OZ4cz3Z52KZw0s7ZFJpUGfy6yfitQDRi8igAD7ktfRzuuPN1nKQE5N9tpc5vLJDJtdZMbeybl4KEL2KDArgQ3bSzyZIZ7yNu9o0fVWTbntms37wyxbd9sxmTV/VlFamxak2+tFljm989YuqGT86o+AwunQUHd+ZTNkhk+usmJtZNz8cvWA6AhTAh0xIP9tJu9sdb7YnJi9M9omYvEMm17uM3N7F5NV/M17CEg/gQ26nn+2m3e2MN1fLV9HJvv+4QwYXFUvm7pDJdRGpCUWqXv034xUEKIAPuVmfkE7zMDvjzeXEZOpkPxQTd8jkOotnQpZQMu/fjNfaCgyGAAXwIbc6eKab3bAz3lxPTCZO9l6Ualbs98d79ErLIduTqdtZwjOZ8m/Ga20FhkINCuBTbtQnZFKcm+p4TZqYkNxQRaSSVBCQHn59T1pFzhSpxvNaW4FUkEEBfMzp9HOm2Y1UxuuV7bX5brCsWFT/+lU7Zwjlwzk/qcp2XZYpy0S2MyibNm1SfX29KisrFQgEtH79+qTX3nXXXQoEAnrsscfiHu/o6NC8efNUUlKi0tJSLViwQF1dXXaHAiAF2dzaOpRsZDeGGi+7J7wjWVYs2a2xu/vG5F1MQ8lmc7lsthXI5vb9TNnOoJw4cUKTJk3Sd7/7Xd1yyy1Jr3v55Ze1efNmVVZWDnhu3rx5amtr08aNG9Xb26s777xTixYt0vPPP293OAAM4lR2g90TZhnsHXf/rNjvj/fo4df3JH0tu0XOphWppiLbtSLZqssy7XRs2wHKrFmzNGvWrEGvOXTokO655x698cYbuuGGG+Ke27NnjxobG7Vt2zZNmTJFkvTEE09o9uzZeuSRRxIGNAC8wcm0uxcnJj9KZbI9s4j0lZZDKb2unSJnU4pUU5GLICAbmUsTu09nvUg2Eolo/vz5uv/++3XZZZcNeL65uVmlpaWx4ESSamtrVVBQoC1btmR7OAAc5mTa3cnlKy9x6myadAoz87nIOVfN5bJRMGxi9+msF8muWrVKhYWF+v73v5/w+fb2dpWXl8cPorBQZWVlam9vT/g1PT096unpiX3e2dmZvQEDyDqyG+5xaqtpuu+487nIOVc9fLKRuTSlr8yZsppB2bFjh372s59pzZo1CgSy94do5cqVCgaDsY+xY8dm7bUB5AbZDec5udU03Xfc+VzknMsgINPMpYmZraxmUN59910dOXJEVVVVscf6+vp033336bHHHtPvfvc7hUIhHTlyJO7rTp06pY6ODoVCoYSvu2zZMi1ZsiT2eWdnJ0EKAJzB6RqCTCbbfC1yznUQkEnm0sTMVlYDlPnz56u2tjbuseuvv17z58/XnXfeKUmqqanRsWPHtGPHDk2ePFmS1NTUpEgkomnTpiV83aKiIhUVFWVzqADgK06fTZPpZJuPy4BOBAHpFgyb2FfGdoDS1dWlffv2xT5vbW1VS0uLysrKVFVVpdGj438xw4cPVygU0iWXXCJJmjBhgurq6rRw4UKtXr1avb29amho0Ny5c9nBA8BopjSwSsTpGoJsTLZe2n2TDSYGAWcyLbNlO0DZvn27ZsyYEfs8uvRyxx13aM2aNSm9xrp169TQ0KBrr71WBQUFmjNnjh5//HG7QwEAx5h+zonTNQSmT7amMi0I6M+kzFbAsqzc7D/Loc7OTgWDQYXDYZWUlLg9HAA+l6x3RfRPtgldS/silqavahoyo/He0muyOtmYHriZyuRsXC7Zmb8JUABgENGJP1l9R64m/nREAykpcUYjV4FUvk62sM/O/M1pxgAwCBMbWCXj1tk0bCnPPqea7ZmM04wBYBAmNrAajEk1BEgPy2anEaAAwCBMbGAlDb6skm+7Y/zEtAP73ESAAsCXslUXYWIDK95h+5OJB/a5iQAFgO9kcwI3bTst77D9y+lme6ajSBaAr+TiPBq3ik/7y9VpuDCD1+qdco0MCgDfyGWK3ITiU95h+5up9U5uIUAB4Bu5nsDdLj7lHba/mVjv5CaWeAD4ht0J3Gu9JvLhHbbX7kk2ReudpD/WN0XZqXfyy++QDAoA37AzgXtxJ4zf32GbcE/c7oqb6Vk9JvwOs4VW9wB8I9XzaB66oVp3P2/22TrJuNXOPtdMOO/IpMk9nUDJhN/hUGh1DyAvpZIif+iGCXr4de/uhDFlR1E2mbA7KRe7vzJh9/gAE36H2cYSDwBfGSpFHjxrhOd3wpiwoyib3N6d5IcGaW7/DnOBAAWA7ww2gb/Sciil1zB9J4zbO4qyye3dSX6Y3N3+HeYCAQoAX0o2gefDThivcfue+GFyd/t3mAvUoADIK9GdMMkS9QGdLoz06k4YL3L7nqQ7uZu0ndft32EuEKAAyCvZ6jWB7HH7nqQzuTfuatP0VU267ZnN+sEvW3TbM5s1fVWT48W0UW7/DnOBAAVA3vHrThhT3s2nw817YndyN23HT5Tf/l3TBwVA3nK7KVe2mNS/I1Nu3pNUfo/RXjvJimqjvXbeW3qNa/+WTP53bWf+JkABAAfkatLwQnMuLxnqPjXvP6rbntk85Ou8sPBqY3f8uMnO/M0uHgDIsVxlOPzQv8M0Q23f9sOOH6+gBgUAciiX9Qp2+ncgO/y4nddUBCgAkCO5bj/Ou3nnDbXjR5JCJUWe2s5rKgIUAK7x+s6ToeQ6w8G7eecNtuMnqvtURBt3tzs3KJ+iBgWAK/y08ySZXGc4ou/mhzq9mXfz2RXdzvv/vfT/dOyz3gHPhz/r1eK1OylQzhAZFACOM7WPRLblOsPhx+ZcZzI5wzazOqTiwmEJn/Pq6cGmIYMCwFH5tPPEiQzHUKc3e/UdvOkZtq2tHWrv9PYBg6YjQAHgKD+cHJuqaIZj8dqdCkhxQUo2MxyDnd7sRcl6u0QzbCYsnVCgnHss8cDzTE4DY6B8+8PuVPvxaP+Ob3z1i6oZP9qzwUmudz5lCwXKuUcGBZ5mehoYA+XjH3a/ZThyySsZNgqUc48MCjwrXwot/Sadk2P9kCXzS4Yj17ySYfN7gbIJyKDAk/Kp0NJv7NZlkCXLL17KsPm1QNkUBCjwJK+kgZFYqn/YvVAsiezy2tIJy3e5Q4ACT/JKGhjJDfWHnSxZfnJq51M2DXXAINJDDQo8yUtpYCQ3WF0GB+HlL6d2PsFsZFDgSV5LA8M+smT5zemlk76IxTKNYQhQ4EleTAPDHrJkiGbYosHDa/91OCfBA4XYZiJAgWdRQe9dqbxbdStLxjtps+Q6eKAQ21wBy7I811Cgs7NTwWBQ4XBYJSUlbg8HLmNC8RY7E0508pASZ8n+qvZiXXje2Vm777yTNkuy4CF6lzMNHvoilqavakpa6xQNgt9beg1/U7LEzvxNgALAMelMOImChnPPHi5LijvqPtNAIteTIexxInho3n9Utz2zecjrXlh4Nbt0ssTO/M0uHgCOSPeMlbqJFXpv6TV6YeHV+tncr+re2i/r089644ITKbMOwl45/yWfOLGLi0JssxGgAHBEJhNOtFjyz79SqV9uO5j066X0Agm2NJvHieCBQmyzEaAAcEQ2JpxcBRK8kzaPE8FDOudCwTkEKAAckY0JJ1eBBO+kzeNE8MCBf2YjQAHgiGxMOLkKJHgnbR6ngge61pqLPigAHJGN5nq56o1C4z8zOdXriAP/zGQ7g7Jp0ybV19ersrJSgUBA69evj3v+Rz/6kS699FKNHDlS5557rmpra7Vly5a4azo6OjRv3jyVlJSotLRUCxYsUFdXV0Y/CADzZfpuNZfvqnknbab+u7heWHi13lt6Tdbvx2DnQsEdtvug/OpXv9L777+vyZMn65ZbbtHLL7+sm266Kfb8888/r/Lycn3pS1/S559/rkcffVQvvvii9u3bpy984QuSpFmzZqmtrU2/+MUv1NvbqzvvvFNXXXWVnn/++ZTGQB8UwF2ZNsfL9Otz2VCt/9gmX3Cudnz0Ke+sgSxwrFFbIBAYEKAkG8ybb76pa6+9Vnv27FF1dbW2bdumKVOmSJIaGxs1e/Zsffzxx6qsrBzy+xKgwO9M7o5rSrdVJ35HQ/2sJt8nwER25u+c1qCcPHlSTz/9tILBoCZNmiRJam5uVmlpaSw4kaTa2loVFBRoy5Ytuvnmm3M5JHhEPv/hNyUASMSkc0uiKflcGepnXfSn4/Tqf7YZeZ8AP8hJgPLaa69p7ty5+uyzz1RRUaGNGzfqvPPOkyS1t7ervLw8fhCFhSorK1N7e3vC1+vp6VFPT0/s887OzlwMG4YweYLONZMCgP6G6rYa0OkmaTOrQ54PJlPpLPuLTa0DnjPhPgF+kZNtxjNmzFBLS4v+4z/+Q3V1dfrmN7+pI0eOpP16K1euVDAYjH2MHTs2i6OFSaITdP9mXJm0MfcK09ut51O31aF+1mRMuE+J9EUsNe8/qldaDql5/1GjxgYkk5MAZeTIkbrooot09dVX69lnn1VhYaGeffZZSVIoFBoQrJw6dUodHR0KhUIJX2/ZsmUKh8Oxj4MHE7e6hreZPkFnw2AThQkBwGDjy6duq5n8DKYFao272jR9VZNue2azfvDLFt32zGZNX9Xk62Af/uBIH5RIJBJboqmpqdGxY8e0Y8cOTZ48WZLU1NSkSCSiadOmJfz6oqIiFRUVOTFUuMjOBO3Fk0WHWrpyOwAYanz51G01Gz9DsvvkZH2VyUuGwFBsByhdXV3at29f7PPW1la1tLSorKxMo0eP1o9//GPdeOONqqio0O9//3s9+eSTOnTokG699VZJ0oQJE1RXV6eFCxdq9erV6u3tVUNDg+bOnZvSDh74l9sTdC6lMlGkOin+7vefuTK+mdWhnDRJM9HkC85V2cjh6jjRO/TFSSS6n07WV6WakfRDzRD8yfYSz/bt23XFFVfoiiuukCQtWbJEV1xxhX74wx9q2LBh+u///m/NmTNHF198serr63X06FG9++67uuyyy2KvsW7dOl166aW69tprNXv2bE2fPl1PP/109n4qeJJf36GnOlFMvuDcQdutRz325m+zmp5PdXyS8uLcksZdbfqzf3g7aXAy1E+XrC2+0/VVqdTRmLQUBfRnO4Py9a9/XYO1TnnppZeGfI2ysrKUm7Ihf+SqjbnbUl262vHRp1peX6271u4c8jVTeeeb6lKCnaU1p1qPuyVZJulMoWCxbpxUoaf/sIsnlbb4buyAau9MLdOY6nWA0ziLB8bw63kodpauvvHVL+re2i/r0Tf3Jr0uGjBs/p+j+tpF5yW8xs5Sgt2lNb+eWzJYEBE1euQI/fr+GRpRWKArqs5NOVBzo76qo6tn6ItsXAc4jQAFRvHjO3S7S1cXnjcypevvXrdT/3fO5QN+J3YLI9NZWst1kzQ3pLIkcvTESe346FPVjB9tK1Bzo76qbOSIrF4HOI0ABcbx2zt0u0tXqQYMxz7vHRBwpLOU4NelNbvSCSJSDdTcqK8KBc/K6nWA03LSBwXIlJ9OFrV7Am80YEj1Jz6zN0w6vVRyeUKwl+QyiBjqniYrrM1E9HsOJtvfE8gmAhTAAdGlq1C/CSMULB6w5BINGFJpR9c/4Eh3KcHO+Pwql0GEG0Fg9HsO9vPkQ+AJ72KJB3BILpeuogFHJlkAvy2t2ZXrIm036quSfc98OdsK3hawBtszbCg7xzUDXtMXsTR9VZOts2BeWHi1asaPjn3tUPUk7y29Jm8CD7ty3UzNjZO68/l0cJjFzvxNBgUwjJ2D6voXsPp1q7aTcp1JcmMHlB93XcH/CFAAw9jdato/4PDjVm2nMaED7iNAAQyTah3J6JEj9OObJyYMOPK9ngSA9xGgAIYZqi+JJJWNHK7mZddqRGHyjXhuZQGodwCQDQQogGFSqSP5yc2XDxqcuMXJ03oB+Jt5f+EAeLIvidOn9QLwNzIogKG8VEfixmm9LCUB/kaAAhjMK7tJnD6t18mlJAIhwB0EKAAy5uRpvXZPa870e1FT4w0Ekv5DgAIgY06d1uvkUpKTgRAyQyDpTxTJAsiYU6f1pnNaczqGCoSk+FOk4R6Ks/2LAAWu64tYat5/VK+0HFLz/qP80fcgp07rdWopyalACJkhkPQ3lnjgKlKz/pGsxX7wrOG682sXamZ1KOPv4dRSkpM1NUif08XZcBYZFLiG1Kz/1E2s0HtLr9G9tRer9KzhkqRjn/fq0Tf3avqqpozvqVNLSU4FQsgMgaS/EaDAFaRm/Wvj7nY99uZvdezz3rjHsxF4OrWUlK1AiOXL3CKQ9DcCFLiCNX5/ciLwdKLLbjYCocZdbZq+qkm3PbNZP/hli257ZnNWskj4I6cyanAHNShwBalZb0m1x4RTNQFOdNlNVlMTSqFGii3Kzkjl3KpsZNTgDgIUuILUrHfYKWR2MvB0ostuOoGQG23/81kmgSTMRoACV0RTs+3h7oR/yAM6/QeG1Ky77GYC/Bh42g2E2FniPC+dW4XUUYMCV6S7xk/RoXPSqSehJoDlS7dEA8lvfPWLqhk/muDEBwhQ4Bq7xY4UHTornUJmp3bZmCzV7NDvj/cQaAODYIkHrko1NUvRofPSzQTke03AUMuXklQQkB5+fU/sc5oTAgMRoJyB0zDdMdQaP0WH7sikniSfawIG21kS1T9hQqANDESA8ge0XDcXRYfuyLSQ2YldNqZKlkUqCAwMTiQCbSARalBEy3XTUXToDupJMhNt+//Cwqv1s7lf1UM3TEgYnETRnBCIl/cBCi3XzefHrateUTexQk/+nyt17sgRcY9ns2trKry6e+vMnSXnjSpK6WsItIHT8n6Jh+UD89EzxT2Nu9r08Ou71XHiZOyxspHD9dANExwLTvyy/EqgDdiT9xkUlg/Mx1KDO5ItfX56old3P/8bR5Y+/bT8So8YwJ68D1B4V+MNThwQ5zeZLIuYsPRpwhiyiUAbsCfvl3hYPvCOfN66alemyyImLH2aMIZsy/ceMYAdeR+gcBqmt+Tz1tVUZaOpnQlLnyaMIRcItIHU5P0Sj8TyAfwjW8siJix9mjCGXOHcGGBoeZ9BieJdDfwgW8siJix9Tr7gXJWNHBG3g8jpMQBwDwHKGVg+gNdla1nE7aXPaA3NYMFJrscAc3EsSX4gQAF8JJvLIm4VdCaroTkTRaX5yy99cTA0AhTgD/zwrizbSzNOL30OVkMTVTZyuH59/wyNKKSELt9wqnl+IUAB5J93ZblYmnFy6XOoGhpJ6jjRqx0ffcpybJ7hVPP8w1sQ5D0/dSuVTmc9Fv3pOAX6/Y0OBKRFfzrO6IDLr1uLkTk7BeDwBwIU5DUTupVm+yC8xl1tenpT64CTcyOW9PSmVqMDLj9vLUZmCF7zD0s8yGtudCs9s9bld78/oRe2HlB7Z0/s+UyWllKp4TA5DW7C9maYieA1/9jOoGzatEn19fWqrKxUIBDQ+vXrY8/19vZq6dKluvzyyzVy5EhVVlbq29/+tg4fPhz3Gh0dHZo3b55KSkpUWlqqBQsWqKurK+MfBrDL6XdljbvaNH1Vk257ZrN+8MsWPfrm3rjgRMpsacnraXDOq0EyHLaYf2wHKCdOnNCkSZP05JNPDnjus88+086dO/XQQw9p586deumll/Thhx/qxhtvjLtu3rx5+uCDD7Rx40a99tpr2rRpkxYtWpT+TwGkycl3ZclqXfrLZGnJD2lwOjsjEYLX/GN7iWfWrFmaNWtWwueCwaA2btwY99g//dM/aerUqTpw4ICqqqq0Z88eNTY2atu2bZoyZYok6YknntDs2bP1yCOPqLKyMo0fA0iPU0sKqSy9nCndpSW/pMHp7IxEOGwxv+S8BiUcDisQCKi0tFSS1NzcrNLS0lhwIkm1tbUqKCjQli1bdPPNNw94jZ6eHvX0/DEN3tnZmethI0841TE1le2zidjNdPiphoPOzkiE4DV/5HQXT3d3t5YuXarbbrtNJSUlkqT29naVl5fHXVdYWKiysjK1t7cnfJ2VK1cqGAzGPsaOHZvLYSPPOLGkkO6Sit1MB2lw5AMOW8wPOcug9Pb26pvf/KYsy9JTTz2V0WstW7ZMS5YsiX3e2dlJkIKsyvW7snSWVM49e3hamQ7S4AD8ICcBSjQ4+eijj9TU1BTLnkhSKBTSkSNH4q4/deqUOjo6FAqFEr5eUVGRioqKcjFUICaXSwpDLb0kkkk3FNLgALwu60s80eBk7969evPNNzV6dPwf/JqaGh07dkw7duyIPdbU1KRIJKJp06ZleziAEQZbeknm2Ge9GW0HJg0OwMtsByhdXV1qaWlRS0uLJKm1tVUtLS06cOCAent79Rd/8Rfavn271q1bp76+PrW3t6u9vV0nT54+Nn3ChAmqq6vTwoULtXXrVr3//vtqaGjQ3Llz2cEDX0tW6zIYk7cDA0AuBSzLspVJfueddzRjxowBj99xxx360Y9+pHHjxiX8urfffltf//rXJZ1u1NbQ0KANGzaooKBAc+bM0eOPP65zzjknpTF0dnYqGAwqHA7HLR8BXtAXsbTm/VY9/PqeIa99YeHV7GQB4Bt25m/bAYoJCFDgdX0RS9NXNQ25Hfi9pdewNAPAN+zM3xwWCLiA7cAAMDgCFMAltHQHgOQ4zRhwEduBASAxAhTAZbR0B4CBWOIBAADGIUABAADGIUABAADGoQYFgNH6IhZFxEAeIkABYKzGXW0DTmWu4FRmIC+wxAPASI272rR47c644ESS2sPdWrx2pxp3tbk0MgBOIEABYJy+iKUVG3YnPAYg+tiKDbvVF/HcSR0AUkSAAsA4W1s7BmROzmRJagt3a2trR07H0Rex1Lz/qF5pOaTm/UcJiAAHUYMCwDhHjicPTtK5Lh3UvwDuIoMCwDjlo4qHvsjGdXZ5tf6FjA/8hAwKAONMHVemimCx2sPdCetQAjp9qOLUcWVZ/95D1b8EdLr+ZWZ1yKjtzqZkfNgWjmwhQAFgnGEFAS2vr9bitTsVkOKChehUt7y+OicTn536FyfOUEplwo9mfPoHVdGMj1OnY5sSJMEfCFAAGKluYoWeuv3KARNeKMcTngn1L1GpTPimZHxMCZLgHwQoAIxVN7FCM6tDji4ZuF3/EpXqhG9CxseUIAn+QpEsAKMNKwioZvxofeOrX1TN+NE5n+Ci9S/JvktAp7MYuah/ibLTB8aEjI8p28LhLwQoAHCGaP2LpAFBSq7rX6LsTPgmZHxMCJLgPwQoANBPtP4lFIyf1EPBYkdqKexM+CZkfEwIkuA/1KAAQAJu1L9E2Znw3dzxFOXmtnD4FxkUAEYxqdmY0/UvUXazIm5nfExYFoP/BCzL8lyrwc7OTgWDQYXDYZWUlLg9HABZQh+NP4ru4pESZ0USBR5uN0nj/mEoduZvAhR4ltt/jJFdybbVDjYh+50XJ3z+v8RgCFDge178w43k+iKWpq9qSrpzJVrD8N7Sa/JusmPCh5/Ymb+pQYHnePUgNyRHH43k3KqDAdxGgAJPsdPACt5BHw0A/RGgwFN4p+1P9NEA0B99UOApuXqnzTq/u+ijAaA/AhR4Si7eaVNw6z4Tmo0BMAtLPPCUbLf1puDWHG43GwNgFjIo8JRsvtPmiHjzuNleHoBZyKDAc7L1TpuCWzNlsq3WpDb5ADJDBgWelI132mxt9RdqiZKjCBxeRIACz4q+004XW1v9I1mb/GgtUT7XsBC4watY4kHeynbBLdxB877kKAKHlxGgIG9xRLw/UEuUGIEbvI4ABXmNra3eRy1RYgRu8DpqUJD32NrqbdQSJUbgBq8jQAGUecEt3EOb/MQI3OB1LPEA8DRqiRKjCBxeR4ACwPOoJRqIwA1eF7Asy3Ml3J2dnQoGgwqHwyopKXF7OAAMQUOygeiDApPYmb8JUADA5wjcYAo78zdFsgDgcxSBw4uoQQEAAMaxHaBs2rRJ9fX1qqysVCAQ0Pr16+Oef+mll3Tddddp9OjRCgQCamlpGfAa3d3duvvuuzV69Gidc845mjNnjj755JN0fwYAAOAztgOUEydOaNKkSXryySeTPj99+nStWrUq6Wvce++92rBhg1588UX9+te/1uHDh3XLLbfYHQoAAPAp2zUos2bN0qxZs5I+P3/+fEnS7373u4TPh8NhPfvss3r++ed1zTXXSJKee+45TZgwQZs3b9bVV19td0gAkDUUlAJmcLxIdseOHert7VVtbW3ssUsvvVRVVVVqbm5OGKD09PSop6cn9nlnZ6cjYwWQX9iSC5jD8SLZ9vZ2jRgxQqWlpXGPjxkzRu3t7Qm/ZuXKlQoGg7GPsWPHOjBSAPmkcVebFq/dOeCAvfZwtxav3anGXW0ujQzIT57YxbNs2TKFw+HYx8GDB90eEgAf6YtYWrFhd8KzfKKPrdiwW30Rz7WNAjzL8QAlFArp5MmTOnbsWNzjn3zyiUKhUMKvKSoqUklJSdwHAGTL1taOAZmTM1mS2sLd2tra4dyggDzneIAyefJkDR8+XG+99VbssQ8//FAHDhxQTU2N08MBAB05njw4Sec6AJmzXSTb1dWlffv2xT5vbW1VS0uLysrKVFVVpY6ODh04cECHDx+WdDr4kE5nTkKhkILBoBYsWKAlS5aorKxMJSUluueee1RTU8MOHgCuKB9VPPRFNq4DkDnbAcr27ds1Y8aM2OdLliyRJN1xxx1as2aNXn31Vd15552x5+fOnStJWr58uX70ox9Jkh599FEVFBRozpw56unp0fXXX6+f//znmfwcgK+x9TW3po4rU0WwWO3h7oR1KAGdPhl56rgyp4cG5C0OCwQMx9ZXZ0R38UiKC1KiYeBTt1/J7xvIkJ352xO7eIB8xdZX59RNrNBTt1+pUDB+GScULCY4AVzAacaAoYba+hrQ6a2vM6tDLPdkSd3ECs2sDrGcBhiAAAUwlJ2trzXjRzs3MJ8bVhDg9wkYgCUewFBsfQWQzwhQAEOx9RVAPiNAAQwV3fqarPohoNO7edj6CsCPCFAAQw0rCGh5fbUkDQhSop8vr6+mgBOALxGgGKYvYql5/1G90nJIzfuPcjhZnmPrK4B8xS4eg9CQC4mw9RVAPqKTrCGiDbn63wy6WJqFlvMAkD478zcZFAPQkMsbyHABgHOoQTGAnYZccAct5wHAWQQoBqAhl9mGynBJpzNcFDQDQPYQoBiAhlxmI8MFAM4jQDEADbnMRoYLAJxHgGIAGnKZjQwXADiPAMUQNOQyFxkuAHAe24wNQkMuM0UzXIvX7lRAiiuWJcMFALlBozYgRfRBAYDM0KgNyAEyXADgHAIUwIZhBQHVjB/t9jAAwPcokgUAAMYhQAEAAMYhQAEAAMYhQAEAAMYhQAEAAMZhFw+AtPRFLLZcA8gZAhQAttG0Lv8QkMJpBCgAbGnc1abFa3eqfwvq9nC3Fq/dydlRPkRACjdQgwIgZX0RSys27B4QnEh/PKNoxYbd6ot47gQNJBENSM8MTqQ/BqSNu9pcGhn8jgDFB/oilpr3H9UrLYfUvP8okwNyZmtrx4CJ6kyWpLZwt7a2djg3KOQMASncxBKPx5F6hZOOHE8enKRzHcxmJyDlCAhkGxkUDyP1CqeVjyrO6nUwGwEp3ESA4lGkXuGGqePKVBEsVrK9GwGdzuBNHVfm5LCQIwSkcBMBikdRCwA3DCsIaHl9tSQNCFKiny+vr2b7qU8QkMJNBCgeReoVbqmbWKGnbr9SoWD8u+ZQsJgtxj5DQAo3USTrUaRe4aa6iRWaWR2icVceiAak/YvxQxTjI8cIUDwqmnptD3cnrEMJ6PQfEFKvyJVhBQF2buQJAlK4gQDFo6Kp18VrdyogxQUppF4BZBsBKZxGDYqHUQsAAPArMigeR+oVAOBHBCg+QOoVAOA3LPEAAADjEKAAAADjEKAAAADjEKAAAADjEKAAAADj2A5QNm3apPr6elVWVioQCGj9+vVxz1uWpR/+8IeqqKjQWWedpdraWu3duzfumo6ODs2bN08lJSUqLS3VggUL1NXVldEPAgAA/MN2gHLixAlNmjRJTz75ZMLn//7v/16PP/64Vq9erS1btmjkyJG6/vrr1d39xzMc5s2bpw8++EAbN27Ua6+9pk2bNmnRokXp/xQAAMBXApZlJTrKJbUvDgT08ssv66abbpJ0OntSWVmp++67T3/9138tSQqHwxozZozWrFmjuXPnas+ePaqurta2bds0ZcoUSVJjY6Nmz56tjz/+WJWVlUN+387OTgWDQYXDYZWUlKQ7fAAA4CA783dWa1BaW1vV3t6u2tra2GPBYFDTpk1Tc3OzJKm5uVmlpaWx4ESSamtrVVBQoC1btiR83Z6eHnV2dsZ9AAAA/8pqgNLe3i5JGjNmTNzjY8aMiT3X3t6u8vLyuOcLCwtVVlYWu6a/lStXKhgMxj7Gjh2bzWEDAADDeGIXz7JlyxQOh2MfBw8edHtIAAAgh7IaoIRCIUnSJ598Evf4J598EnsuFArpyJEjcc+fOnVKHR0dsWv6KyoqUklJSdwHAADwr6wGKOPGjVMoFNJbb70Ve6yzs1NbtmxRTU2NJKmmpkbHjh3Tjh07Ytc0NTUpEolo2rRp2RwOAADwKNunGXd1dWnfvn2xz1tbW9XS0qKysjJVVVXpr/7qr/R3f/d3+vKXv6xx48bpoYceUmVlZWynz4QJE1RXV6eFCxdq9erV6u3tVUNDg+bOnZvSDh4AAOB/tgOU7du3a8aMGbHPlyxZIkm64447tGbNGj3wwAM6ceKEFi1apGPHjmn69OlqbGxUcXFx7GvWrVunhoYGXXvttSooKNCcOXP0+OOPZ+HHAQAAfpBRHxS30AcFAADvsTN/286g5Iu+iKWtrR06crxb5aOKNXVcmYYVBNweFgAAeYEAJYHGXW1asWG32sJ/bM9fESzW8vpq1U2scHFkAADkB0/0QXFS4642LV67My44kaT2cLcWr92pxl1tLo0MAID8QYByhr6IpRUbditRUU70sRUbdqsv4rmyHQAAPIUA5QxbWzsGZE7OZElqC3dra2uHc4MCACAPEaCc4cjx5MFJOtcBAID0EKCcoXxU8dAX2bgOAACkhwDlDFPHlakiWKxkm4kDOr2bZ+q4MieHBQBA3iFAOcOwgoCW11dL0oAgJfr58vpq+qEAAJBjBCj91E2s0FO3X6lQMH4ZJxQs1lO3X0kfFAAAHECjtgTqJlZoZnWITrIAALiEACWJYQUB1Ywf7fYwAADISyzxAAAA4xCgAAAA4xCgAAAA4xCgAAAA4xCgAAAA4xCgAAAA4xCgAAAA4xCgAAAA4xCgAAAA43iyk6xlWZKkzs5Ol0cCAABSFZ23o/P4YDwZoBw/flySNHbsWJdHAgAA7Dp+/LiCweCg1wSsVMIYw0QiER0+fFijRo1SIOCfA/w6Ozs1duxYHTx4UCUlJW4PB4PgXnkL98tbuF/eYfdeWZal48ePq7KyUgUFg1eZeDKDUlBQoPPPP9/tYeRMSUkJ/1N6BPfKW7hf3sL98g4792qozEkURbIAAMA4BCgAAMA4BCgGKSoq0vLly1VUVOT2UDAE7pW3cL+8hfvlHbm8V54skgUAAP5GBgUAABiHAAUAABiHAAUAABiHAAUAABiHAMUFhw4d0u23367Ro0frrLPO0uWXX67t27cnvPauu+5SIBDQY4895uwgISm1e7Vnzx7deOONCgaDGjlypK666iodOHDApRHnt6HuV1dXlxoaGnT++efrrLPOUnV1tVavXu3iiPPXhRdeqEAgMODj7rvvliR1d3fr7rvv1ujRo3XOOedozpw5+uSTT1wedf4a7H51dHTonnvu0SWXXKKzzjpLVVVV+v73v69wOJzR9/RkJ1kv+/TTT/W1r31NM2bM0K9+9St94Qtf0N69e3XuuecOuPbll1/W5s2bVVlZ6cJIkcq92r9/v6ZPn64FCxZoxYoVKikp0QcffKDi4mIXR56fUrlfS5YsUVNTk9auXasLL7xQ//7v/67vfe97qqys1I033uji6PPPtm3b1NfXF/t8165dmjlzpm699VZJ0r333qvXX39dL774ooLBoBoaGnTLLbfo/fffd2vIeW2w+3X48GEdPnxYjzzyiKqrq/XRRx/prrvu0uHDh/Vv//Zv6X9TC45aunSpNX369CGv+/jjj60vfvGL1q5du6wLLrjAevTRR3M/OMRJ5V5961vfsm6//XaHRoTBpHK/LrvsMutv//Zv4x678sorrb/5m7/J5dCQgh/84AfW+PHjrUgkYh07dswaPny49eKLL8ae37NnjyXJam5udnGUiDrzfiXyr//6r9aIESOs3t7etL8HSzwOe/XVVzVlyhTdeuutKi8v1xVXXKFnnnkm7ppIJKL58+fr/vvv12WXXebSSDHUvYpEInr99dd18cUX6/rrr1d5ebmmTZum9evXuzfoPJbK/1t/8id/oldffVWHDh2SZVl6++239dvf/lbXXXedS6OGJJ08eVJr167Vd7/7XQUCAe3YsUO9vb2qra2NXXPppZeqqqpKzc3NLo4U0sD7lUg4HFZJSYkKCzNYqEk7tEFaioqKrKKiImvZsmXWzp07rV/84hdWcXGxtWbNmtg1P/nJT6yZM2fGIlMyKO4Y6l61tbVZkqyzzz7b+ulPf2r95je/sVauXGkFAgHrnXfecXn0+SeV/7e6u7utb3/725Ykq7Cw0BoxYoT1z//8zy6OGpZlWf/yL/9iDRs2zDp06JBlWZa1bt06a8SIEQOuu+qqq6wHHnjA6eGhn/73q7///d//taqqqqwHH3wwo+9DgOKw4cOHWzU1NXGP3XPPPdbVV19tWZZlbd++3RozZkzcjSdAccdQ9+rQoUOWJOu2226Lu6a+vt6aO3euY+PEaUPdL8uyrH/4h3+wLr74YuvVV1+1/vM//9N64oknrHPOOcfauHGj08PFGa677jrrz//8z2OfE6CYrf/9OlM4HLamTp1q1dXVWSdPnszo+7DE47CKigpVV1fHPTZhwoTYro93331XR44cUVVVlQoLC1VYWKiPPvpI9913ny688EIXRpy/hrpX5513ngoLCwe9Bs4Z6n59/vnnevDBB/XTn/5U9fX1+spXvqKGhgZ961vf0iOPPOLGkCHpo48+0ptvvqm//Mu/jD0WCoV08uRJHTt2LO7aTz75RKFQyOER4kyJ7lfU8ePHVVdXp1GjRunll1/W8OHDM/peBCgO+9rXvqYPP/ww7rHf/va3uuCCCyRJ8+fP13/913+ppaUl9lFZWan7779fb7zxhhtDzltD3asRI0boqquuGvQaOGeo+9Xb26ve3l4VFMT/2Rs2bJgikYhj40S85557TuXl5brhhhtij02ePFnDhw/XW2+9FXvsww8/1IEDB1RTU+PGMPEHie6XJHV2duq6667TiBEj9Oqrr2ZnJ2NG+RfYtnXrVquwsND68Y9/bO3du9dat26ddfbZZ1tr165N+jUs8bgjlXv10ksvWcOHD7eefvppa+/evdYTTzxhDRs2zHr33XddHHl+SuV+/dmf/Zl12WWXWW+//bb1P//zP9Zzzz1nFRcXWz//+c9dHHn+6uvrs6qqqqylS5cOeO6uu+6yqqqqrKamJmv79u1WTU3NgCU8OCvZ/QqHw9a0adOsyy+/3Nq3b5/V1tYW+zh16lTa348AxQUbNmywJk6caBUVFVmXXnqp9fTTTw96PQGKe1K5V88++6x10UUXWcXFxdakSZOs9evXuzBSWNbQ96utrc36zne+Y1VWVlrFxcXWJZdcYv3jP/5j0q2SyK033njDkmR9+OGHA577/PPPre9973vWueeea5199tnWzTffbLW1tbkwSkQlu19vv/22JSnhR2tra9rfL2BZlpV5HgYAACB7qEEBAADGIUABAADGIUABAADGIUABAADGIUABAADGIUABAADGIUABAADGIUABAADGIUABAADGIUABAADGIUABAADGIUABAADG+f8BgJ8m05boYPQAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.scatter(data[\"Height(Inches)\"],data[\"Weight(Pounds)\"])" ] }, { "cell_type": "code", "execution_count": 5, "id": "a9e26124-41f7-4e28-82db-2e05f45f4318", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Height(Inches)
065.78331
171.51521
269.39874
368.21660
467.78781
......
9570.55703
9666.28644
9763.42577
9866.76711
9968.88741
\n", "

100 rows × 1 columns

\n", "
" ], "text/plain": [ " Height(Inches)\n", "0 65.78331\n", "1 71.51521\n", "2 69.39874\n", "3 68.21660\n", "4 67.78781\n", ".. ...\n", "95 70.55703\n", "96 66.28644\n", "97 63.42577\n", "98 66.76711\n", "99 68.88741\n", "\n", "[100 rows x 1 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inputs = pd.read_csv(\"/Users/deepeshjha/Desktop/DSnML/weight.csv\",encoding='windows-1254', nrows=100,usecols=(0,1))\n", "inputs.drop(columns='Index',axis=1,inplace=True)\n", "\n", "inputs" ] }, { "cell_type": "code", "execution_count": 6, "id": "4bc99879-111f-4da6-b4da-c0e2ec449bbe", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Weight(Pounds)
0112.9925
1136.4873
2153.0269
3142.3354
4144.2971
......
95131.8001
96120.0285
97123.0972
98128.1432
99115.4759
\n", "

100 rows × 1 columns

\n", "
" ], "text/plain": [ " Weight(Pounds)\n", "0 112.9925\n", "1 136.4873\n", "2 153.0269\n", "3 142.3354\n", "4 144.2971\n", ".. ...\n", "95 131.8001\n", "96 120.0285\n", "97 123.0972\n", "98 128.1432\n", "99 115.4759\n", "\n", "[100 rows x 1 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "targets = pd.read_csv(\"/Users/deepeshjha/Desktop/DSnML/weight.csv\",encoding='windows-1254', nrows=100,usecols=(2,2))\n", "targets" ] }, { "cell_type": "code", "execution_count": 7, "id": "e16b3b6b-5d5e-4f3d-ad35-92e45ea0656a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[65.78331],\n", " [71.51521],\n", " [69.39874],\n", " [68.2166 ],\n", " [67.78781],\n", " [68.69784],\n", " [69.80204],\n", " [70.01472],\n", " [67.90265],\n", " [66.78236],\n", " [66.48769],\n", " [67.62333],\n", " [68.30248],\n", " [67.11656],\n", " [68.27967],\n", " [71.0916 ],\n", " [66.461 ],\n", " [68.64927],\n", " [71.23033],\n", " [67.13118],\n", " [67.83379],\n", " [68.87881],\n", " [63.48115],\n", " [68.42187],\n", " [67.62804],\n", " [67.20864],\n", " [70.84235],\n", " [67.49434],\n", " [66.53401],\n", " [65.44098],\n", " [69.5233 ],\n", " [65.8132 ],\n", " [67.8163 ],\n", " [70.59505],\n", " [71.80484],\n", " [69.20613],\n", " [66.80368],\n", " [67.65893],\n", " [67.80701],\n", " [64.04535],\n", " [68.57463],\n", " [65.18357],\n", " [69.65814],\n", " [67.96731],\n", " [65.98088],\n", " [68.67249],\n", " [66.88088],\n", " [67.69868],\n", " [69.82117],\n", " [69.08817],\n", " [69.91479],\n", " [67.33182],\n", " [70.26939],\n", " [69.10344],\n", " [65.38356],\n", " [70.18447],\n", " [70.40617],\n", " [66.54376],\n", " [66.36418],\n", " [67.537 ],\n", " [66.50418],\n", " [68.99958],\n", " [68.30355],\n", " [67.01255],\n", " [70.80592],\n", " [68.21951],\n", " [69.05914],\n", " [67.73103],\n", " [67.21568],\n", " [67.36763],\n", " [65.27033],\n", " [70.84278],\n", " [69.92442],\n", " [64.28508],\n", " [68.2452 ],\n", " [66.35708],\n", " [68.36275],\n", " [65.4769 ],\n", " [69.71947],\n", " [67.72554],\n", " [68.63941],\n", " [66.78405],\n", " [70.05147],\n", " [66.27848],\n", " [69.20198],\n", " [69.13481],\n", " [67.36436],\n", " [70.09297],\n", " [70.1766 ],\n", " [68.22556],\n", " [68.12932],\n", " [70.24256],\n", " [71.48752],\n", " [69.20477],\n", " [70.06306],\n", " [70.55703],\n", " [66.28644],\n", " [63.42577],\n", " [66.76711],\n", " [68.88741]], dtype=float32)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr = inputs.values\n", "arr = arr.astype('float32')\n", "arr" ] }, { "cell_type": "code", "execution_count": 8, "id": "beb315ca-950b-48d1-8b8e-68456c97913e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[112.9925 ],\n", " [136.4873 ],\n", " [153.0269 ],\n", " [142.3354 ],\n", " [144.2971 ],\n", " [123.3024 ],\n", " [141.4947 ],\n", " [136.4623 ],\n", " [112.3723 ],\n", " [120.6672 ],\n", " [127.4516 ],\n", " [114.143 ],\n", " [125.6107 ],\n", " [122.4618 ],\n", " [116.0866 ],\n", " [139.9975 ],\n", " [129.5023 ],\n", " [142.9733 ],\n", " [137.9025 ],\n", " [124.0449 ],\n", " [141.2807 ],\n", " [143.5392 ],\n", " [ 97.90191],\n", " [129.5027 ],\n", " [141.8501 ],\n", " [129.7244 ],\n", " [142.4235 ],\n", " [131.5502 ],\n", " [108.3324 ],\n", " [113.8922 ],\n", " [103.3016 ],\n", " [120.7536 ],\n", " [125.7886 ],\n", " [136.2225 ],\n", " [140.1015 ],\n", " [128.7487 ],\n", " [141.7994 ],\n", " [121.2319 ],\n", " [131.3478 ],\n", " [106.7115 ],\n", " [124.3598 ],\n", " [124.8591 ],\n", " [139.6711 ],\n", " [137.3696 ],\n", " [106.4499 ],\n", " [128.7639 ],\n", " [145.6837 ],\n", " [116.819 ],\n", " [143.6215 ],\n", " [134.9325 ],\n", " [147.0219 ],\n", " [126.3285 ],\n", " [125.4839 ],\n", " [115.7084 ],\n", " [123.4892 ],\n", " [147.8926 ],\n", " [155.8987 ],\n", " [128.0742 ],\n", " [119.3701 ],\n", " [133.8148 ],\n", " [128.7325 ],\n", " [137.5453 ],\n", " [129.7604 ],\n", " [128.824 ],\n", " [135.3165 ],\n", " [109.6113 ],\n", " [142.4684 ],\n", " [132.749 ],\n", " [103.5275 ],\n", " [124.7299 ],\n", " [129.3137 ],\n", " [134.0175 ],\n", " [140.3969 ],\n", " [102.8351 ],\n", " [128.5214 ],\n", " [120.2991 ],\n", " [138.6036 ],\n", " [132.9574 ],\n", " [115.6233 ],\n", " [122.524 ],\n", " [134.6254 ],\n", " [121.8986 ],\n", " [155.3767 ],\n", " [128.9418 ],\n", " [129.1013 ],\n", " [139.4733 ],\n", " [140.8901 ],\n", " [131.5916 ],\n", " [121.1232 ],\n", " [131.5127 ],\n", " [136.5479 ],\n", " [141.4896 ],\n", " [140.6104 ],\n", " [112.1413 ],\n", " [133.457 ],\n", " [131.8001 ],\n", " [120.0285 ],\n", " [123.0972 ],\n", " [128.1432 ],\n", " [115.4759 ]], dtype=float32)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr1 = targets.values\n", "arr1 = arr1.astype('float32')\n", "arr1" ] }, { "cell_type": "code", "execution_count": 9, "id": "caacc6e7-9b91-4c0d-ae14-dfcdf6d8cbe2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[65.7833],\n", " [71.5152],\n", " [69.3987],\n", " [68.2166],\n", " [67.7878],\n", " [68.6978],\n", " [69.8020],\n", " [70.0147],\n", " [67.9026],\n", " [66.7824],\n", " [66.4877],\n", " [67.6233],\n", " [68.3025],\n", " [67.1166],\n", " [68.2797],\n", " [71.0916],\n", " [66.4610],\n", " [68.6493],\n", " [71.2303],\n", " [67.1312],\n", " [67.8338],\n", " [68.8788],\n", " [63.4812],\n", " [68.4219],\n", " [67.6280],\n", " [67.2086],\n", " [70.8423],\n", " [67.4943],\n", " [66.5340],\n", " [65.4410],\n", " [69.5233],\n", " [65.8132],\n", " [67.8163],\n", " [70.5950],\n", " [71.8048],\n", " [69.2061],\n", " [66.8037],\n", " [67.6589],\n", " [67.8070],\n", " [64.0453],\n", " [68.5746],\n", " [65.1836],\n", " [69.6581],\n", " [67.9673],\n", " [65.9809],\n", " [68.6725],\n", " [66.8809],\n", " [67.6987],\n", " [69.8212],\n", " [69.0882],\n", " [69.9148],\n", " [67.3318],\n", " [70.2694],\n", " [69.1034],\n", " [65.3836],\n", " [70.1845],\n", " [70.4062],\n", " [66.5438],\n", " [66.3642],\n", " [67.5370],\n", " [66.5042],\n", " [68.9996],\n", " [68.3036],\n", " [67.0126],\n", " [70.8059],\n", " [68.2195],\n", " [69.0591],\n", " [67.7310],\n", " [67.2157],\n", " [67.3676],\n", " [65.2703],\n", " [70.8428],\n", " [69.9244],\n", " [64.2851],\n", " [68.2452],\n", " [66.3571],\n", " [68.3627],\n", " [65.4769],\n", " [69.7195],\n", " [67.7255],\n", " [68.6394],\n", " [66.7840],\n", " [70.0515],\n", " [66.2785],\n", " [69.2020],\n", " [69.1348],\n", " [67.3644],\n", " [70.0930],\n", " [70.1766],\n", " [68.2256],\n", " [68.1293],\n", " [70.2426],\n", " [71.4875],\n", " [69.2048],\n", " [70.0631],\n", " [70.5570],\n", " [66.2864],\n", " [63.4258],\n", " [66.7671],\n", " [68.8874]])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "inputtens = torch.tensor(arr)\n", "inputtens" ] }, { "cell_type": "code", "execution_count": 10, "id": "3d5e8506-3ebb-4ef1-9a0d-45002a991265", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[112.9925],\n", " [136.4873],\n", " [153.0269],\n", " [142.3354],\n", " [144.2971],\n", " [123.3024],\n", " [141.4947],\n", " [136.4623],\n", " [112.3723],\n", " [120.6672],\n", " [127.4516],\n", " [114.1430],\n", " [125.6107],\n", " [122.4618],\n", " [116.0866],\n", " [139.9975],\n", " [129.5023],\n", " [142.9733],\n", " [137.9025],\n", " [124.0449],\n", " [141.2807],\n", " [143.5392],\n", " [ 97.9019],\n", " [129.5027],\n", " [141.8501],\n", " [129.7244],\n", " [142.4235],\n", " [131.5502],\n", " [108.3324],\n", " [113.8922],\n", " [103.3016],\n", " [120.7536],\n", " [125.7886],\n", " [136.2225],\n", " [140.1015],\n", " [128.7487],\n", " [141.7994],\n", " [121.2319],\n", " [131.3478],\n", " [106.7115],\n", " [124.3598],\n", " [124.8591],\n", " [139.6711],\n", " [137.3696],\n", " [106.4499],\n", " [128.7639],\n", " [145.6837],\n", " [116.8190],\n", " [143.6215],\n", " [134.9325],\n", " [147.0219],\n", " [126.3285],\n", " [125.4839],\n", " [115.7084],\n", " [123.4892],\n", " [147.8926],\n", " [155.8987],\n", " [128.0742],\n", " [119.3701],\n", " [133.8148],\n", " [128.7325],\n", " [137.5453],\n", " [129.7604],\n", " [128.8240],\n", " [135.3165],\n", " [109.6113],\n", " [142.4684],\n", " [132.7490],\n", " [103.5275],\n", " [124.7299],\n", " [129.3137],\n", " [134.0175],\n", " [140.3969],\n", " [102.8351],\n", " [128.5214],\n", " [120.2991],\n", " [138.6036],\n", " [132.9574],\n", " [115.6233],\n", " [122.5240],\n", " [134.6254],\n", " [121.8986],\n", " [155.3767],\n", " [128.9418],\n", " [129.1013],\n", " [139.4733],\n", " [140.8901],\n", " [131.5916],\n", " [121.1232],\n", " [131.5127],\n", " [136.5479],\n", " [141.4896],\n", " [140.6104],\n", " [112.1413],\n", " [133.4570],\n", " [131.8001],\n", " [120.0285],\n", " [123.0972],\n", " [128.1432],\n", " [115.4759]])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "outputtens = torch.tensor(arr1)\n", "outputtens" ] }, { "cell_type": "code", "execution_count": 11, "id": "f5b4f1fd-40fa-4be1-8f0e-67006692fec9", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[-1.6313]], requires_grad=True)\n", "tensor([[ 0.3640],\n", " [ 0.4578],\n", " [-0.2280],\n", " [ 0.8230],\n", " [ 0.3227],\n", " [ 0.0840],\n", " [-0.3212],\n", " [ 0.1655],\n", " [ 0.5730],\n", " [-0.4883],\n", " [ 1.0952],\n", " [ 0.9407],\n", " [ 2.2522],\n", " [-0.0274],\n", " [ 1.4389],\n", " [-0.5267],\n", " [ 1.4747],\n", " [-0.7532],\n", " [-0.6311],\n", " [ 2.1627],\n", " [ 0.4899],\n", " [ 0.7637],\n", " [ 0.6485],\n", " [ 1.2025],\n", " [ 0.2459],\n", " [ 0.1473],\n", " [-2.3008],\n", " [-0.7537],\n", " [-1.1512],\n", " [-0.6872],\n", " [-1.1901],\n", " [-0.8182],\n", " [ 0.1322],\n", " [ 0.4698],\n", " [-1.0642],\n", " [ 0.7324],\n", " [ 2.3941],\n", " [ 0.2191],\n", " [ 0.2571],\n", " [ 0.3011],\n", " [-1.6922],\n", " [-1.3596],\n", " [ 0.4794],\n", " [-0.6092],\n", " [ 0.0362],\n", " [ 0.9389],\n", " [-0.0921],\n", " [ 0.7333],\n", " [-0.3299],\n", " [-1.9814],\n", " [ 0.3726],\n", " [-0.2153],\n", " [ 1.6981],\n", " [-0.3395],\n", " [ 0.2804],\n", " [-1.1851],\n", " [ 0.0993],\n", " [-0.5853],\n", " [-0.5532],\n", " [ 0.9530],\n", " [ 0.0082],\n", " [-0.7154],\n", " [-0.4459],\n", " [ 0.8444],\n", " [-0.7292],\n", " [-0.7376],\n", " [ 0.6551],\n", " [ 0.3394],\n", " [-1.0288],\n", " [ 0.0195],\n", " [-0.4089],\n", " [-1.3883],\n", " [ 0.0122],\n", " [ 1.7722],\n", " [ 1.1468],\n", " [ 0.0302],\n", " [-0.4004],\n", " [-0.1592],\n", " [-0.0305],\n", " [ 0.5156],\n", " [ 0.6942],\n", " [ 0.8665],\n", " [ 1.6664],\n", " [-0.7205],\n", " [-2.0495],\n", " [-1.9289],\n", " [ 0.5188],\n", " [-1.5122],\n", " [-0.1012],\n", " [-1.5340],\n", " [-0.4765],\n", " [-0.7763],\n", " [ 0.9087],\n", " [ 0.9382],\n", " [-0.7229],\n", " [-0.3025],\n", " [ 0.9606],\n", " [-2.4262],\n", " [ 1.0602],\n", " [-0.1201]], requires_grad=True)\n" ] } ], "source": [ "w = torch.randn(1,1,requires_grad = True)\n", "b = torch.randn(100,1, requires_grad=True)\n", "print(w);print(b)" ] }, { "cell_type": "code", "execution_count": 12, "id": "ef6f463a-6341-47bb-8d4c-0e315b801cb3", "metadata": {}, "outputs": [], "source": [ "def model(x):\n", " return x@w.t()+b" ] }, { "cell_type": "code", "execution_count": 13, "id": "c6b7b8ea-dec1-47c0-9fd2-508d4641e3f2", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[-106.9474],\n", " [-116.2038],\n", " [-113.4371],\n", " [-110.4577],\n", " [-110.2585],\n", " [-111.9818],\n", " [-114.1882],\n", " [-114.0485],\n", " [-110.1955],\n", " [-109.4294],\n", " [-107.3652],\n", " [-109.3722],\n", " [-109.1686],\n", " [-109.5136],\n", " [-109.9447],\n", " [-116.4973],\n", " [-106.9421],\n", " [-112.7397],\n", " [-116.8281],\n", " [-107.3474],\n", " [-110.1663],\n", " [-111.5973],\n", " [-102.9073],\n", " [-110.4130],\n", " [-110.0747],\n", " [-109.4891],\n", " [-117.8648],\n", " [-110.8562],\n", " [-109.6871],\n", " [-107.4400],\n", " [-114.6024],\n", " [-108.1782],\n", " [-110.4955],\n", " [-114.6909],\n", " [-118.1983],\n", " [-112.1625],\n", " [-106.5817],\n", " [-110.1519],\n", " [-110.3554],\n", " [-104.1751],\n", " [-113.5570],\n", " [-107.6925],\n", " [-113.1528],\n", " [-111.4832],\n", " [-107.5974],\n", " [-111.0855],\n", " [-109.1938],\n", " [-109.7025],\n", " [-114.2281],\n", " [-114.6839],\n", " [-113.6784],\n", " [-110.0527],\n", " [-112.9313],\n", " [-113.0669],\n", " [-106.3789],\n", " [-115.6759],\n", " [-114.7533],\n", " [-109.1371],\n", " [-108.8121],\n", " [-109.2191],\n", " [-108.4791],\n", " [-113.2734],\n", " [-111.8684],\n", " [-108.4722],\n", " [-116.2338],\n", " [-112.0230],\n", " [-112.0000],\n", " [-110.1492],\n", " [-110.6767],\n", " [-109.8763],\n", " [-106.8834],\n", " [-116.9531],\n", " [-114.0544],\n", " [-103.0950],\n", " [-110.1806],\n", " [-108.2171],\n", " [-111.9195],\n", " [-106.9706],\n", " [-113.7628],\n", " [-109.9641],\n", " [-111.2763],\n", " [-108.0773],\n", " [-112.6075],\n", " [-108.8396],\n", " [-114.9376],\n", " [-114.7074],\n", " [-109.3717],\n", " [-115.8538],\n", " [-114.5792],\n", " [-112.8294],\n", " [-111.6148],\n", " [-115.3619],\n", " [-115.7078],\n", " [-111.9545],\n", " [-115.0157],\n", " [-115.4011],\n", " [-107.1714],\n", " [-105.8917],\n", " [-107.8560],\n", " [-112.4951]], grad_fn=)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pred = model(inputtens)\n", "pred" ] }, { "cell_type": "code", "execution_count": 14, "id": "fc5b3c9a-dcb5-4bed-b13e-242814088108", "metadata": {}, "outputs": [], "source": [ "def mse(t1,t2):\n", " diff = t1 - t2\n", " return torch.sum(diff*diff) / torch.numel(t1)" ] }, { "cell_type": "code", "execution_count": 15, "id": "23ed2b53-84cd-4a2e-9549-d73a598b0be6", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor(57970.6367, grad_fn=)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loss = mse(pred, outputtens)\n", "loss" ] }, { "cell_type": "code", "execution_count": 16, "id": "ad1199f1-df9d-476e-acd1-f8ecbe89cce2", "metadata": {}, "outputs": [], "source": [ "for i in range(100):\n", " pred = model(inputtens)\n", " loss = mse(pred, outputtens)\n", " loss.backward()\n", " with torch.no_grad(): \n", " w -= w.grad * 2e-4\n", " b -= b.grad * 2e-4\n", " w.grad.zero_()\n", " b.grad.zero_()" ] }, { "cell_type": "code", "execution_count": 17, "id": "fa3f2fd0-cc3a-4931-8adf-56d19722d852", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(114.4077, grad_fn=)\n" ] } ], "source": [ "pred = model(inputtens)\n", "loss = mse(pred, outputtens)\n", "print(loss)" ] }, { "cell_type": "code", "execution_count": 18, "id": "7e0e4ee8-511f-45fd-932d-3082a1172709", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[125.1754],\n", " [136.1499],\n", " [131.4568],\n", " [130.2610],\n", " [128.9485],\n", " [130.4274],\n", " [132.1239],\n", " [133.0117],\n", " [129.4037],\n", " [126.2214],\n", " [127.2480],\n", " [129.2422],\n", " [131.8459],\n", " [127.3166],\n", " [130.9858],\n", " [134.3638],\n", " [127.5776],\n", " [129.5063],\n", " [134.5216],\n", " [129.5342],\n", " [129.2016],\n", " [131.4581],\n", " [121.0875],\n", " [131.0246],\n", " [128.5677],\n", " [127.6688],\n", " [132.1186],\n", " [127.3107],\n", " [125.0828],\n", " [123.4758],\n", " [130.7115],\n", " [124.0536],\n", " [128.8047],\n", " [134.4165],\n", " [135.1792],\n", " [132.0418],\n", " [129.1515],\n", " [128.5912],\n", " [128.9141],\n", " [121.8138],\n", " [128.4187],\n", " [122.3198],\n", " [132.6506],\n", " [128.3546],\n", " [125.2199],\n", " [131.2361],\n", " [126.8143],\n", " [129.1789],\n", " [132.1524],\n", " [129.1079],\n", " [133.0335],\n", " [127.5386],\n", " [135.0224],\n", " [130.7703],\n", " [124.3378],\n", " [131.9883],\n", " [133.6958],\n", " [125.6749],\n", " [125.3628],\n", " [129.0986],\n", " [126.1933],\n", " [130.2064],\n", " [129.1526],\n", " [127.9934],\n", " [133.6176],\n", " [128.6935],\n", " [131.6912],\n", " [128.8528],\n", " [126.4961],\n", " [127.8406],\n", " [123.4364],\n", " [133.0281],\n", " [132.6889],\n", " [123.7374],\n", " [130.6334],\n", " [125.9329],\n", " [129.3138],\n", " [124.0793],\n", " [132.2475],\n", " [129.0144],\n", " [130.9311],\n", " [127.5793],\n", " [134.5893],\n", " [125.0369],\n", " [129.2533],\n", " [129.2506],\n", " [128.3400],\n", " [131.4812],\n", " [133.0461],\n", " [127.9176],\n", " [128.7942],\n", " [132.5045],\n", " [136.5497],\n", " [132.2383],\n", " [132.2143],\n", " [133.5707],\n", " [126.7289],\n", " [117.9190],\n", " [127.7433],\n", " [130.5798]], grad_fn=)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pred" ] }, { "cell_type": "code", "execution_count": 19, "id": "2bf9f77f-46ab-4840-94e7-30aa56a8fdfe", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[112.9925],\n", " [136.4873],\n", " [153.0269],\n", " [142.3354],\n", " [144.2971],\n", " [123.3024],\n", " [141.4947],\n", " [136.4623],\n", " [112.3723],\n", " [120.6672],\n", " [127.4516],\n", " [114.1430],\n", " [125.6107],\n", " [122.4618],\n", " [116.0866],\n", " [139.9975],\n", " [129.5023],\n", " [142.9733],\n", " [137.9025],\n", " [124.0449],\n", " [141.2807],\n", " [143.5392],\n", " [ 97.9019],\n", " [129.5027],\n", " [141.8501],\n", " [129.7244],\n", " [142.4235],\n", " [131.5502],\n", " [108.3324],\n", " [113.8922],\n", " [103.3016],\n", " [120.7536],\n", " [125.7886],\n", " [136.2225],\n", " [140.1015],\n", " [128.7487],\n", " [141.7994],\n", " [121.2319],\n", " [131.3478],\n", " [106.7115],\n", " [124.3598],\n", " [124.8591],\n", " [139.6711],\n", " [137.3696],\n", " [106.4499],\n", " [128.7639],\n", " [145.6837],\n", " [116.8190],\n", " [143.6215],\n", " [134.9325],\n", " [147.0219],\n", " [126.3285],\n", " [125.4839],\n", " [115.7084],\n", " [123.4892],\n", " [147.8926],\n", " [155.8987],\n", " [128.0742],\n", " [119.3701],\n", " [133.8148],\n", " [128.7325],\n", " [137.5453],\n", " [129.7604],\n", " [128.8240],\n", " [135.3165],\n", " [109.6113],\n", " [142.4684],\n", " [132.7490],\n", " [103.5275],\n", " [124.7299],\n", " [129.3137],\n", " [134.0175],\n", " [140.3969],\n", " [102.8351],\n", " [128.5214],\n", " [120.2991],\n", " [138.6036],\n", " [132.9574],\n", " [115.6233],\n", " [122.5240],\n", " [134.6254],\n", " [121.8986],\n", " [155.3767],\n", " [128.9418],\n", " [129.1013],\n", " [139.4733],\n", " [140.8901],\n", " [131.5916],\n", " [121.1232],\n", " [131.5127],\n", " [136.5479],\n", " [141.4896],\n", " [140.6104],\n", " [112.1413],\n", " [133.4570],\n", " [131.8001],\n", " [120.0285],\n", " [123.0972],\n", " [128.1432],\n", " [115.4759]])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "outputtens" ] }, { "cell_type": "code", "execution_count": 20, "id": "847109cf-7a80-42b8-86a4-fe739637d80c", "metadata": {}, "outputs": [], "source": [ "import torch.nn as nn" ] }, { "cell_type": "code", "execution_count": 21, "id": "2409fab5-cbd7-4fa4-9c50-7cdb56c04442", "metadata": {}, "outputs": [], "source": [ "from torch.utils.data import TensorDataset" ] }, { "cell_type": "code", "execution_count": 22, "id": "28bf033e-3755-48aa-b9e7-c98a69999468", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(tensor([[65.7833],\n", " [71.5152],\n", " [69.3987]]),\n", " tensor([[112.9925],\n", " [136.4873],\n", " [153.0269]]))" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#Define dataset\n", "train_ds = TensorDataset(inputtens, outputtens)\n", "train_ds[0:3]" ] }, { "cell_type": "code", "execution_count": 23, "id": "fe4d61cd-9774-42f1-873b-ee04d44cb2ad", "metadata": {}, "outputs": [], "source": [ "from torch.utils.data import DataLoader" ] }, { "cell_type": "code", "execution_count": 24, "id": "e943b0a1-370d-4377-b05c-ff947d44e8b1", "metadata": {}, "outputs": [], "source": [ "batch_size = 20\n", "train_dl = DataLoader(train_ds,batch_size,shuffle =True)" ] }, { "cell_type": "code", "execution_count": 25, "id": "1d0c093b-65ff-46dc-931b-96c8db8104ec", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[69.7195],\n", " [68.1293],\n", " [68.3627],\n", " [69.9148],\n", " [65.7833],\n", " [71.0916],\n", " [67.2157],\n", " [66.4877],\n", " [69.2020],\n", " [68.8788],\n", " [67.3318],\n", " [68.2195],\n", " [67.6589],\n", " [68.5746],\n", " [70.0147],\n", " [69.5233],\n", " [66.7671],\n", " [67.7878],\n", " [67.6987],\n", " [70.0515]])\n", "tensor([[115.6233],\n", " [136.5479],\n", " [138.6036],\n", " [147.0219],\n", " [112.9925],\n", " [139.9975],\n", " [103.5275],\n", " [127.4516],\n", " [129.1013],\n", " [143.5392],\n", " [126.3285],\n", " [109.6113],\n", " [121.2319],\n", " [124.3598],\n", " [136.4623],\n", " [103.3016],\n", " [128.1432],\n", " [144.2971],\n", " [116.8190],\n", " [155.3767]])\n" ] } ], "source": [ "for xb,yb in train_dl:\n", " print(xb)\n", " print(yb)\n", " break" ] }, { "cell_type": "code", "execution_count": 26, "id": "5ead94c8-1cdd-469f-aaa8-f9ee06c84116", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Parameter containing:\n", "tensor([[-0.3148]], requires_grad=True)\n", "Parameter containing:\n", "tensor([0.9556], requires_grad=True)\n" ] } ], "source": [ "#define model \n", "model = nn.Linear(1,1)\n", "print(model.weight)\n", "print(model.bias)" ] }, { "cell_type": "code", "execution_count": 27, "id": "4766750a-6ca9-4ebb-ae47-8f614b6dcc17", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[Parameter containing:\n", " tensor([[-0.3148]], requires_grad=True),\n", " Parameter containing:\n", " tensor([0.9556], requires_grad=True)]" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "list(model.parameters())" ] }, { "cell_type": "code", "execution_count": 28, "id": "14f6de56-463e-4b38-9364-0908781d5c04", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[-19.7557],\n", " [-21.5603],\n", " [-20.8940],\n", " [-20.5218],\n", " [-20.3868],\n", " [-20.6733],\n", " [-21.0210],\n", " [-21.0879],\n", " [-20.4230],\n", " [-20.0702],\n", " [-19.9775],\n", " [-20.3350],\n", " [-20.5488],\n", " [-20.1755],\n", " [-20.5417],\n", " [-21.4270],\n", " [-19.9691],\n", " [-20.6580],\n", " [-21.4707],\n", " [-20.1801],\n", " [-20.4013],\n", " [-20.7303],\n", " [-19.0309],\n", " [-20.5864],\n", " [-20.3365],\n", " [-20.2045],\n", " [-21.3485],\n", " [-20.2944],\n", " [-19.9921],\n", " [-19.6479],\n", " [-20.9332],\n", " [-19.7651],\n", " [-20.3958],\n", " [-21.2706],\n", " [-21.6515],\n", " [-20.8334],\n", " [-20.0770],\n", " [-20.3462],\n", " [-20.3928],\n", " [-19.2085],\n", " [-20.6345],\n", " [-19.5669],\n", " [-20.9757],\n", " [-20.4433],\n", " [-19.8179],\n", " [-20.6653],\n", " [-20.1013],\n", " [-20.3587],\n", " [-21.0270],\n", " [-20.7962],\n", " [-21.0565],\n", " [-20.2432],\n", " [-21.1681],\n", " [-20.8010],\n", " [-19.6298],\n", " [-21.1414],\n", " [-21.2112],\n", " [-19.9951],\n", " [-19.9386],\n", " [-20.3078],\n", " [-19.9827],\n", " [-20.7683],\n", " [-20.5492],\n", " [-20.1427],\n", " [-21.3370],\n", " [-20.5227],\n", " [-20.7871],\n", " [-20.3689],\n", " [-20.2067],\n", " [-20.2545],\n", " [-19.5942],\n", " [-21.3486],\n", " [-21.0595],\n", " [-19.2840],\n", " [-20.5308],\n", " [-19.9364],\n", " [-20.5678],\n", " [-19.6592],\n", " [-20.9950],\n", " [-20.3672],\n", " [-20.6549],\n", " [-20.0708],\n", " [-21.0995],\n", " [-19.9116],\n", " [-20.8320],\n", " [-20.8109],\n", " [-20.2535],\n", " [-21.1126],\n", " [-21.1389],\n", " [-20.5246],\n", " [-20.4943],\n", " [-21.1597],\n", " [-21.5516],\n", " [-20.8329],\n", " [-21.1031],\n", " [-21.2587],\n", " [-19.9141],\n", " [-19.0135],\n", " [-20.0654],\n", " [-20.7330]], grad_fn=)" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pred = model(inputtens)\n", "pred" ] }, { "cell_type": "code", "execution_count": 29, "id": "634982b0-8960-4c80-badb-aa57c9c7ba1a", "metadata": {}, "outputs": [], "source": [ "import torch.nn.functional as F" ] }, { "cell_type": "code", "execution_count": 30, "id": "3bd3cc25-9b97-4432-b91d-222d40c4b8c6", "metadata": {}, "outputs": [], "source": [ "loss_fn = F.mse_loss" ] }, { "cell_type": "code", "execution_count": 31, "id": "e54d013c-58cc-4355-aa49-864ea696dd01", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor(22565.3145, grad_fn=)" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "loss = loss_fn(model(inputtens),outputtens)\n", "loss" ] }, { "cell_type": "code", "execution_count": 32, "id": "37477f67-1d2f-45b9-993b-0f6494ca251a", "metadata": {}, "outputs": [], "source": [ "opt = torch.optim.SGD(model.parameters(),lr=1e-5)" ] }, { "cell_type": "code", "execution_count": 33, "id": "bd1f13b3-7009-4daf-a569-e4650584a618", "metadata": {}, "outputs": [], "source": [ "def fit(num_epochs, model, loss_fn, opt, train_dl):\n", " for epoch in range(num_epochs):\n", " for xb,yb in train_dl:\n", " pred = model(xb)\n", " loss = loss_fn(pred,yb)\n", " loss.backward()\n", " opt.step()\n", " opt.zero_grad()\n", " if(epoch+1)%10 == 0:\n", " print('Epoch [{}/{} Loss: {:.4f}'.format(epoch+1, num_epochs,loss.item()))" ] }, { "cell_type": "code", "execution_count": 34, "id": "8f2e0973-31c8-4879-9108-89d418d1b056", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch [10/100 Loss: 95.5826\n", "Epoch [20/100 Loss: 135.4428\n", "Epoch [30/100 Loss: 112.6919\n", "Epoch [40/100 Loss: 84.2813\n", "Epoch [50/100 Loss: 77.5900\n", "Epoch [60/100 Loss: 99.5134\n", "Epoch [70/100 Loss: 68.5490\n", "Epoch [80/100 Loss: 84.0584\n", "Epoch [90/100 Loss: 119.4308\n", "Epoch [100/100 Loss: 152.1199\n" ] } ], "source": [ "fit(100,model,loss_fn,opt,train_dl)" ] }, { "cell_type": "code", "execution_count": 69, "id": "404b257b-45fb-4f0b-a399-64b76a252c39", "metadata": {}, "outputs": [], "source": [ "height = 167\n", "height = height/2.5" ] }, { "cell_type": "code", "execution_count": 70, "id": "bf1b548a-8b84-4f8e-9c5e-bfe171bd6cb0", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[57.5882]], grad_fn=)" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ans = model(torch.tensor([[height]]))\n", "ans = ans*0.453592\n", "ans" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.0" } }, "nbformat": 4, "nbformat_minor": 5 }