--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: part-of-speech ( pos ) tagging is a fundamental language analysis task---part-of-speech ( pos ) tagging is a fundamental nlp task , used by a wide variety of applications - text: the two baseline methods were implemented using scikit-learn in python---the models were implemented using scikit-learn module - text: semantic parsing is the task of converting a sentence into a representation of its meaning , usually in a logical form grounded in the symbols of some fixed ontology or relational database ( cite-p-21-3-3 , cite-p-21-3-4 , cite-p-21-1-11 )---for this language model , we built a trigram language model with kneser-ney smoothing using srilm from the same automatically segmented corpus - text: the results show that our model can clearly outperform the baselines in terms of three evaluation metrics---for the extractive or abstractive summaries , we use rouge scores , a metric used to evaluate automatic summarization performance , to measure the pairwise agreement of summaries from different annotators - text: language models were built with srilm , modified kneser-ney smoothing , default pruning , and order 5---the language model used was a 5-gram with modified kneserney smoothing , built with srilm toolkit pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-TinyBERT-L6-v2 --- # SetFit with sentence-transformers/paraphrase-TinyBERT-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-TinyBERT-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-TinyBERT-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-TinyBERT-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-TinyBERT-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("whateverweird17/parasci3_1") # Run inference preds = model("the two baseline methods were implemented using scikit-learn in python---the models were implemented using scikit-learn module") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 27 | 35.8125 | 54 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 8 | | 1 | 8 | ### Training Hyperparameters - batch_size: (8, 8) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 10 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.025 | 1 | 0.1715 | - | | 1.25 | 50 | 0.0028 | - | | 2.5 | 100 | 0.0005 | - | | 3.75 | 150 | 0.0002 | - | | 5.0 | 200 | 0.0003 | - | | 6.25 | 250 | 0.0001 | - | | 7.5 | 300 | 0.0002 | - | | 8.75 | 350 | 0.0001 | - | | 10.0 | 400 | 0.0001 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.33.0 - PyTorch: 2.0.0 - Datasets: 2.16.0 - Tokenizers: 0.13.3 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```