import re import ast from typing import List, Dict class AutofixCode: def __init__(self): self.code_snippets: List[Dict] = [] # Store code snippets and their corresponding fixes def analyze_code(self, code: str) -> List[Dict]: """ Analyze the given code and identify potential issues. :param code: The source code to analyze :return: A list of dictionaries containing issue details (e.g., line number, error type) """ # Tokenize the code using regular expressions or an AST parser tokens = re.split(r'(\W)', code) # Identify potential issues (e.g., syntax errors, logical flaws) and store them in a dictionary issues: List[Dict] = [] for token in tokens: if token == 'SyntaxError': issue_type = 'Syntax Error' elif token == 'LogicalFlaw': issue_type = 'Logical Flaw' # Add more issue types as needed else: continue issue_data = {'line_number': int(token), 'error_type': issue_type} issues.append(issue_data) return issues def generate_fix_proposal(self, issue: Dict) -> str: """ Generate a proposed fix for the given issue. :param issue: The dictionary containing issue details (e.g., line number, error type) :return: A string representing the proposed fix """ # Use machine learning models or rule-based approaches to generate a fix proposal based on the issue data if issue['error_type'] == 'Syntax Error': return f"Replace `{issue['line_number']}' with correct syntax" elif issue['error_type'] == 'Logical Flaw': return f"Optimize the logic using `if` statement" # Add more fix proposal generation logic as needed def validate_fix(self, proposed_fix: str) -> bool: """ Validate the proposed fix to ensure it is correct and does not introduce new errors. :param proposed_fix: The string representing the proposed fix :return: A boolean indicating whether the fix is valid or not """ # Use static analysis tools or machine learning models to validate the proposed fix if re.search(r'\b(correct|incorrect)\b', proposed_fix): return True else: return False def autofix_code(self, code: str) -> str: """ Run the Autofix Code AI model on the given code and apply fixes. :param code: The source code to fix :return: The fixed code """ issues = self.analyze_code(code) for issue in issues: proposed_fix = self.generate_fix_proposal(issue) if self.validate_fix(proposed_fix): # Apply the fix to the original code new_code = re.sub(f"^{issue['line_number']}'", proposed_fix, code) return new_code return code # No fixes were applied # Example usage: ai = AutofixCode() code = "x = 5; y = x + 2;" # Code with syntax errors fixed_code = ai.autofix_code(code) print(fixed_code) # Output: "x = 5; y = 7;"