--- language: - es license: apache-2.0 tags: - whisper-event - generated_from_trainer base_model: openai/whisper-small datasets: - mozilla-foundation/common_voice_17_0 - google/fleurs - facebook/multilingual_librispeech - facebook/voxpopuli metrics: - wer model-index: - name: Whisper Small Mixed-Spanish results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_17_0 es type: mozilla-foundation/common_voice_17_0 config: es split: test args: es metrics: - type: wer value: 8.634474343167287 name: Wer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: es_419 split: test metrics: - type: wer value: 5.34 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/multilingual_librispeech type: facebook/multilingual_librispeech config: spanish split: test metrics: - type: wer value: 6.02 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/voxpopuli type: facebook/voxpopuli config: es split: test metrics: - type: wer value: 8.55 name: WER pipeline_tag: automatic-speech-recognition --- # Whisper Small Mixed-Spanish This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the es datasets: - mozilla-foundation/common_voice_17_0 - google/fleurs - facebook/multilingual_librispeech - facebook/voxpopuli It achieves the following results on the evaluation set: - Loss: 0.1809 - Wer: 8.6345 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.247 | 0.2 | 1000 | 0.2160 | 10.3975 | | 0.1337 | 0.4 | 2000 | 0.2010 | 9.6749 | | 0.1401 | 0.6 | 3000 | 0.1905 | 9.0946 | | 0.1714 | 0.8 | 4000 | 0.1849 | 8.8550 | | 0.1046 | 1.0 | 5000 | 0.1809 | 8.6345 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1